Natural affinors on higher order cotangent bundle
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 175-180
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
All natural affinors on the $r$-th order cotangent bundle $T^{r*}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^{r*}M$ and the $s$-th power affinors $Q^s_M : TT^{r*}M \rightarrow VT^{r*}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^{r,r}_s$ of $T^{r*}M$. An arbitrary natural affinor is a linear combination of the basic ones.
All natural affinors on the $r$-th order cotangent bundle $T^{r*}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^{r*}M$ and the $s$-th power affinors $Q^s_M : TT^{r*}M \rightarrow VT^{r*}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^{r,r}_s$ of $T^{r*}M$. An arbitrary natural affinor is a linear combination of the basic ones.
@article{ARM_1992_28_3-4_a4,
author = {Kurek, Jan},
title = {Natural affinors on higher order cotangent bundle},
journal = {Archivum mathematicum},
pages = {175--180},
year = {1992},
volume = {28},
number = {3-4},
mrnumber = {1222284},
zbl = {0782.58007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a4/}
}
Kurek, Jan. Natural affinors on higher order cotangent bundle. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 175-180. http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a4/