Sprays and homogeneous connections on ${\bf R}\times {\it TM}$
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 163-173 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The homogeneity properties of two different families of geometric objects playing a crutial role in the non-autonomous first-order dynamics - semisprays and dynamical connections on $R\times TM$ - are studied. A natural correspondence between sprays and a special class of homogeneous connections is presented.
The homogeneity properties of two different families of geometric objects playing a crutial role in the non-autonomous first-order dynamics - semisprays and dynamical connections on $R\times TM$ - are studied. A natural correspondence between sprays and a special class of homogeneous connections is presented.
Classification : 53C05, 53C15, 58F05, 70H03, 70H35
Keywords: semispray; connection; path; torsion; tension; spray; homogeneous dynamical connection
@article{ARM_1992_28_3-4_a3,
     author = {Vondra, Alexandr},
     title = {Sprays and homogeneous connections on ${\bf R}\times {\it TM}$},
     journal = {Archivum mathematicum},
     pages = {163--173},
     year = {1992},
     volume = {28},
     number = {3-4},
     mrnumber = {1222283},
     zbl = {0790.53028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a3/}
}
TY  - JOUR
AU  - Vondra, Alexandr
TI  - Sprays and homogeneous connections on ${\bf R}\times {\it TM}$
JO  - Archivum mathematicum
PY  - 1992
SP  - 163
EP  - 173
VL  - 28
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a3/
LA  - en
ID  - ARM_1992_28_3-4_a3
ER  - 
%0 Journal Article
%A Vondra, Alexandr
%T Sprays and homogeneous connections on ${\bf R}\times {\it TM}$
%J Archivum mathematicum
%D 1992
%P 163-173
%V 28
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a3/
%G en
%F ARM_1992_28_3-4_a3
Vondra, Alexandr. Sprays and homogeneous connections on ${\bf R}\times {\it TM}$. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 163-173. http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a3/

[1] Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin/Cummings Publ. Comp., Reading, 1978. | MR

[2] Crampin, M., Prince, G.E., Thompson, G.: A geometrical version of the Helmholtz conditions in time dependent Lagrangian dynamics. J. Phys. A: Math. Gen. 17 (1984), 1437-1447. | MR

[3] de Andres, L.C., de León, M., Rodrigues, P.R.: Connections on tangent bundles of higher order. Demonstratio Mathematica 22 (3) (1989), 607-632. | MR

[4] de Andres, L.C., de León, M., Rodrigues, P.R.: Connections on tangent bundles of higher order associated to regular Lagrangians. Geometriae Dedicata 39 (1991), 12-18. | MR

[5] de León, M., Mello, M.H., Rodrigues, P.R.: A geometrical approach to the inverse problem of non-autonomous lagrangian dynamics. (preprint, 1990).

[6] de León, M., Rodrigues, P.R.: Dynamical connections and non-autonomous lagrangian systems. Ann. Fac. Sci. IX (1988), Tolouse, 171-181. | MR

[7] de León, M., Rodrigues, P.R.: Generalized Classical Mechanics and Field Theory. Mathematical Studies 112 (1985), North - Holland, Amsterdam. | MR

[8] Doupovec, M., Kolář, I.: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205-209. | MR

[9] Klein, J.: Almost symplectic structures in dynamics. Proc. Conf. Diff. Geom. and Its Appl. (1986), Brno, 79-91. | MR

[10] Klein, J.: Geometry of sprays. Lagrangian case. Principle of least curvature. Proc.IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, Volume I-Geometrical Dynamics (1982), 177-196. | MR | Zbl

[11] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. (to appear). | MR

[12] Mangiarotti, L., Modugno, M.: Connections and differential calculus on fibred manifolds. Applications to field theory. Instituto di Matematica Applicata 11 “G. Sansone”, Firenze (to appear).

[13] Modugno, M.: Torsion and Ricci tensor for non-linear connections. (to appear).

[14] Saunders, D.J.: The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series 142 (1989), Cambridge University Press. | MR | Zbl

[15] Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, 1965. | MR

[16] Thompson, G.: Second-order equation fields and the inverse problem of Lagrangian dynamics. J. Math. Phys. 28 (12) (1987), 2851-2857. | MR | Zbl

[17] Vondra, A.: On some connections related to the geometry of regular higher-order dynamics. (preprint, 1990).

[18] Vondra, A.: Semisprays, connections and regular equations in higher order mechanics. Proc. Conf. Diff. Geom. and Its Appl. (19891990), World Scientific, Brno Singapore, 276-287. | MR