The structure tensor and first order natural differential operators
Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 121-138 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion of a structure tensor of section of first order natural bundles with homogeneous standard fibre is introduced. Properties of the structure tensor operator are studied. The universal factorization property of the structure tensor operator is proved and used for classification of first order $*$-natural differential operators $\underline{D}:\underline{T\times T} \rightarrow \underline{T}$ for $n\ge 3$.
The notion of a structure tensor of section of first order natural bundles with homogeneous standard fibre is introduced. Properties of the structure tensor operator are studied. The universal factorization property of the structure tensor operator is proved and used for classification of first order $*$-natural differential operators $\underline{D}:\underline{T\times T} \rightarrow \underline{T}$ for $n\ge 3$.
Classification : 53A55, 53C10, 58A20
Keywords: natural bundle; natural affine; vector bundle; natural differential operator; G-structure; structure tensor
@article{ARM_1992_28_3-4_a0,
     author = {Kobak, Piotr},
     title = {The structure tensor and first order natural differential operators},
     journal = {Archivum mathematicum},
     pages = {121--138},
     year = {1992},
     volume = {28},
     number = {3-4},
     mrnumber = {1222280},
     zbl = {0785.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a0/}
}
TY  - JOUR
AU  - Kobak, Piotr
TI  - The structure tensor and first order natural differential operators
JO  - Archivum mathematicum
PY  - 1992
SP  - 121
EP  - 138
VL  - 28
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a0/
LA  - en
ID  - ARM_1992_28_3-4_a0
ER  - 
%0 Journal Article
%A Kobak, Piotr
%T The structure tensor and first order natural differential operators
%J Archivum mathematicum
%D 1992
%P 121-138
%V 28
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a0/
%G en
%F ARM_1992_28_3-4_a0
Kobak, Piotr. The structure tensor and first order natural differential operators. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 121-138. http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a0/

[1] Bernard, D.: Sur la gèometrie differèntiele des $G$-structures. Ann. Inst. Fourier 10 (1960). | MR

[2] Epstein, D.B.A.: Natural tensors on Riemannian manifolds. J. Diff. Geom. 10 (1975), 631 -645. | MR | Zbl

[3] Fujimoto, A.: Theory of $G$-structures. Publications of the Study Group of Geometry 1 (1972), Okayama. | MR | Zbl

[4] Gancarzewicz, J.: Liftings of functions and vector fields to natural bundles. Diss. Math. CCXII (1983), Institute of Mathematics, Warszawa. | MR

[5] Kolář, I., Michor, P.: All natural concomitants of vector valued differential forms. Proc. of the Winter School of Geometry and Physics (1987), Srní. | MR

[6] Krupka, D.: Natural Lagrangian structures. Diff. Geom. 12 (1984), Banach center Publications, PWN - Polish Scientific Publisher, Warszaw, 185-210. | MR | Zbl

[7] Krupka, D., Mikolášová, V.: On the uniqueness of some differential invariants: $d,[,], \triangledown $. Cz. Math. J. 34(109) (1984), 588-597. | MR

[8] Konderak, J.: Fibre bundles associated with fields of geometric objects and a structure tensor. preprint, International Centre For Theoretical Physics, Miramare, Trieste, 1987.

[9] Łubczonok, G.: On the reduction Theorems. Ann. Polon. Math. XXVI (1972), 125-133. | MR

[10] Pommaret, J.F.: Systems of partial differential equations and Lie pseudogroups. Gordon and Breach, 1978. | MR | Zbl

[11] Terng, G.L.: Natural vector bundle and natural differential operators. Am. J. Math. 100 (1978), 775-828. | MR

[12] Zajtz, A.: Foundations of differential geometry of natural bundles. Univ. of Caracas, 1984.