Keywords: natural bundle; natural affine; vector bundle; natural differential operator; G-structure; structure tensor
@article{ARM_1992_28_3-4_a0,
author = {Kobak, Piotr},
title = {The structure tensor and first order natural differential operators},
journal = {Archivum mathematicum},
pages = {121--138},
year = {1992},
volume = {28},
number = {3-4},
mrnumber = {1222280},
zbl = {0785.53014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a0/}
}
Kobak, Piotr. The structure tensor and first order natural differential operators. Archivum mathematicum, Tome 28 (1992) no. 3-4, pp. 121-138. http://geodesic.mathdoc.fr/item/ARM_1992_28_3-4_a0/
[1] Bernard, D.: Sur la gèometrie differèntiele des $G$-structures. Ann. Inst. Fourier 10 (1960). | MR
[2] Epstein, D.B.A.: Natural tensors on Riemannian manifolds. J. Diff. Geom. 10 (1975), 631 -645. | MR | Zbl
[3] Fujimoto, A.: Theory of $G$-structures. Publications of the Study Group of Geometry 1 (1972), Okayama. | MR | Zbl
[4] Gancarzewicz, J.: Liftings of functions and vector fields to natural bundles. Diss. Math. CCXII (1983), Institute of Mathematics, Warszawa. | MR
[5] Kolář, I., Michor, P.: All natural concomitants of vector valued differential forms. Proc. of the Winter School of Geometry and Physics (1987), Srní. | MR
[6] Krupka, D.: Natural Lagrangian structures. Diff. Geom. 12 (1984), Banach center Publications, PWN - Polish Scientific Publisher, Warszaw, 185-210. | MR | Zbl
[7] Krupka, D., Mikolášová, V.: On the uniqueness of some differential invariants: $d,[,], \triangledown $. Cz. Math. J. 34(109) (1984), 588-597. | MR
[8] Konderak, J.: Fibre bundles associated with fields of geometric objects and a structure tensor. preprint, International Centre For Theoretical Physics, Miramare, Trieste, 1987.
[9] Łubczonok, G.: On the reduction Theorems. Ann. Polon. Math. XXVI (1972), 125-133. | MR
[10] Pommaret, J.F.: Systems of partial differential equations and Lie pseudogroups. Gordon and Breach, 1978. | MR | Zbl
[11] Terng, G.L.: Natural vector bundle and natural differential operators. Am. J. Math. 100 (1978), 775-828. | MR
[12] Zajtz, A.: Foundations of differential geometry of natural bundles. Univ. of Caracas, 1984.