Keywords: principal solution; linear Hamiltonian system; reciprocal system
@article{ARM_1992_28_1-2_a13,
author = {Do\v{s}l\'y, Ond\v{r}ej},
title = {Principal solutions and transformations of linear {Hamiltonian} systems},
journal = {Archivum mathematicum},
pages = {113--120},
year = {1992},
volume = {28},
number = {1-2},
mrnumber = {1201872},
zbl = {0805.34007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_1-2_a13/}
}
Došlý, Ondřej. Principal solutions and transformations of linear Hamiltonian systems. Archivum mathematicum, Tome 28 (1992) no. 1-2, pp. 113-120. http://geodesic.mathdoc.fr/item/ARM_1992_28_1-2_a13/
[1] Ahlbrandt C.D.: Principal and antiprincipal solutions of selfadjoint diferential systems and their reciprocals. Rocky Mountain J. Math. 2 (1972), 169-189. | MR
[2] Ahlbrandt C.D.: Equivalent boundary value problems for self-adjoint differential systems. J. Diff Equations 9 (1971), 420-435. | MR | Zbl
[3] Ahlbrandt C.D., Hinton D.B., Lewis R.T.: The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory. J. Math. Anal. Appl. 81 (1981), 234-277. | MR
[4] Coppel W.A.: Disconjugacy. Lecture Notes in Math. No. 220 (1971), Berlin – New York – Heidelberg. | MR | Zbl
[5] Došlý O.: On transformation of self-adjoint linear differential systems and their reciprocals. Annal. Pol. Math. 50 (1990), 223-234.
[6] Došlý O.: Transformations of linear Hamiltonian system preserving oscillatory behaviour. Arch. Math. 27 (1991), 211-219. | MR
[7] Hartman P.: Self-adjoint, non-oscillatory systems of ordinary, second order linear differential equations. Duke J. Math. 24 (1956), 25-35. | MR
[8] Rasmussen C.H.: Oscillation and asymptotic behaviour of systems of ordinary linear differential equations. Trans. Amer. Math. Soc. 256 (1979), 1-49. | MR
[9] Reid W.T.: Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York – Berlin – Heidelberg, 1980. | MR | Zbl