Direct factors of multilattice groups. II
Archivum mathematicum, Tome 28 (1992) no. 1-2, pp. 83-84
Subgroups of a directed distributive multilattice group $G$ are characterized which are direct factors of $G$. The main result is formulated in Theorem 2.
Subgroups of a directed distributive multilattice group $G$ are characterized which are direct factors of $G$. The main result is formulated in Theorem 2.
Classification :
06F15
Keywords: partially ordered group; multilattice group; distributivity; retract; direct product
Keywords: partially ordered group; multilattice group; distributivity; retract; direct product
@article{ARM_1992_28_1-2_a10,
author = {Kolibiar, Milan},
title = {Direct factors of multilattice groups. {II}},
journal = {Archivum mathematicum},
pages = {83--84},
year = {1992},
volume = {28},
number = {1-2},
mrnumber = {1201869},
zbl = {0779.06012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1992_28_1-2_a10/}
}
Kolibiar, Milan. Direct factors of multilattice groups. II. Archivum mathematicum, Tome 28 (1992) no. 1-2, pp. 83-84. http://geodesic.mathdoc.fr/item/ARM_1992_28_1-2_a10/
[1] Kolibiar M.: Direct factors of multilattice groups. Archivum Math. (Brno) 26 (1990), 121-128. | MR | Zbl
[2] Benado M.: Sur la théorie de la divisibilité. Bull. Sti. Sect. Sti. Mat. - Fiz. 6 (1954), Acad. R. P. Romîne, 263-270. | MR | Zbl
[3] McAlister D. B.: On multilattice groups. Proc. Cambridge Philos. Soc. 61 (1965), 621-638. | MR | Zbl
[4] Birkhoff G.: Lattice Theory. Amer. Math. Soc. Colloquium . XXV (1948), Publ. revised edition,, New York. | MR | Zbl