Metrically regular square of metrically regular bigraphs. I
Archivum mathematicum, Tome 27 (1991) no. 3-4, pp. 183-197 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C50, 05E30
@article{ARM_1991_27_3-4_a6,
     author = {Vetch\'y, Vladim{\'\i}r},
     title = {Metrically regular square of metrically regular bigraphs. {I}},
     journal = {Archivum mathematicum},
     pages = {183--197},
     year = {1991},
     volume = {27},
     number = {3-4},
     mrnumber = {1189214},
     zbl = {0764.05068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1991_27_3-4_a6/}
}
TY  - JOUR
AU  - Vetchý, Vladimír
TI  - Metrically regular square of metrically regular bigraphs. I
JO  - Archivum mathematicum
PY  - 1991
SP  - 183
EP  - 197
VL  - 27
IS  - 3-4
UR  - http://geodesic.mathdoc.fr/item/ARM_1991_27_3-4_a6/
LA  - en
ID  - ARM_1991_27_3-4_a6
ER  - 
%0 Journal Article
%A Vetchý, Vladimír
%T Metrically regular square of metrically regular bigraphs. I
%J Archivum mathematicum
%D 1991
%P 183-197
%V 27
%N 3-4
%U http://geodesic.mathdoc.fr/item/ARM_1991_27_3-4_a6/
%G en
%F ARM_1991_27_3-4_a6
Vetchý, Vladimír. Metrically regular square of metrically regular bigraphs. I. Archivum mathematicum, Tome 27 (1991) no. 3-4, pp. 183-197. http://geodesic.mathdoc.fr/item/ARM_1991_27_3-4_a6/

[1] L. Bauer: Association Schemes I. Arch. Math. Brno 17 (1981), 173-184. | MR | Zbl

[2] R.C. Bose T. Shimamoto: Classification and analysis of partially balanced incomplete block design with two association classes. J. Amer. Stat. Assn. 47 (1952), 151-184. | MR

[3] R. C Bose D. M. Messner: On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30 (1959), 21-36. | MR

[4] L. Collatz U. Sinogowitz: Spektren endlicher Graphen. Abh. Math. Sem. Univ. Hamburg 21 (1957), 63-77. | MR

[5] D. M. Cvetković: Graphs and their spectra. Univ. Beograd Publ. Elektroteh. Fak., Ser. Mat. Fiz., No. 354 - No. 356 (1971), 1-50. | MR

[6] D. M. Cvetković M. Doob H. Sachs: Spectra of graphs. Deutscher Verlag der Wissenchaften, Berlin, 1980. | MR

[7] D. M. Cvetković M. Doob: Root systems, forbidden subgraphs and spectral characterization of line graphs. Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983.

[8] M. Doob: Graphs with a small number of distinct eigenvalues. Ann. New York Acad. Sci. 175 (1970), 1, 104-110. | MR | Zbl

[9] A. J. Hoffman: On the polynomial of a graph. Amer. Math. Monthly 70 (1963), 30-36. | MR | Zbl

[10] H. A. Jung: Zu einem Isomorphiesatz von Whitney für Graphen. Math. Ann. 164 (1966), 270-271. | MR

[11] H. Sachs: Über selbstkomplementäre Graphen. Publ. Math. Debrecen 9 (1962), 270-288. | MR | Zbl

[12] H. Sachs: Über Teiler, Faktoren und charakteristische Polynome von Graphen. Teil II., Wiss. Z. TH Ilmenau 13 (1967), 405-412. | MR | Zbl

[13] J. H. Smith: Some properties of the spectrum of a graph. Comb.Struct, and their Applic., Gordon and Breach, Sci. Publ. Inc., New York-London-Paris 1970, 403-406. | MR | Zbl