@article{ARM_1991_27_3-4_a10,
author = {Do\v{s}l\'y, Ond\v{r}ej},
title = {Transformations of linear {Hamiltonian} systems preserving oscillatory behaviour},
journal = {Archivum mathematicum},
pages = {211--219},
year = {1991},
volume = {27},
number = {3-4},
mrnumber = {1189218},
zbl = {0764.34026},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1991_27_3-4_a10/}
}
Došlý, Ondřej. Transformations of linear Hamiltonian systems preserving oscillatory behaviour. Archivum mathematicum, Tome 27 (1991) no. 3-4, pp. 211-219. http://geodesic.mathdoc.fr/item/ARM_1991_27_3-4_a10/
[1] Ahlbrandt C.D.: Equivalent boundary value problems for self-adjoint differential systems. J. Diff Equations, vol 9, 1971, 420-435. | MR | Zbl
[2] Atkinson F.V: Discrete and Continuous Boundary Value Problems. 1964, Acad. Press., New York. | MR
[3] Barrett J.H: Oscillation theory of ordinary differential equations. Adv. in Math., vol З, 1969, 415-509. | MR
[4] Coppel W.A.: Disconjugacy. Lecture Notes in Math., 1971, Berlin - New York - Heidelbeгg. | MR | Zbl
[5] Došlá Z., Zezra P.: Singular quadratic functionals with free endpoints. in preparation.
[6] Došlý O.: On transformation of self-adjoint differential systems and their reciprocals. Annal. Pol. Math. 50, 1990, 223-234.
[7] Došlý O.: On some properties of trigonometric matrices. Čas. pěst. mat., vol 112, 1987. | MR | Zbl
[8] Hartman P.: Self-adjoint, non-oscillatory systems of ordinary, second order linear differential equations. Duke J. Math., vol 24, 1956, 25-35. | MR
[9] Jakubovič V.A.: Oscillatory properties of solutions of canonical equations. Mat. Sb. (N. S.), vol 56, 1962, 3-42. (Russian) | MR
[10] Rasmussen C.H.: Oscillation and asymptotic behaviour of systems of ordinary linear differential equations. T. A. M. S., vol 256, 1979, 1-48.
[11] Reid W.T.: Sturmian Theory for Ordinary Differential Equations. Springer-Verlag, New York - Berlin - Heidelberg, 1980. | MR | Zbl
[12] Staněk S., Vosmanský J.: Transformation of linear second order ordinary differential equations. Arch. Math., vol 22, 1986, 55-60. | MR