@article{ARM_1991_27_1-2_a8,
author = {Nadzieja, Tadek},
title = {Shadowing lemma for family of $\varepsilon$-trajectories},
journal = {Archivum mathematicum},
pages = {65--77},
year = {1991},
volume = {27},
number = {1-2},
mrnumber = {1189643},
zbl = {0763.58021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a8/}
}
Nadzieja, Tadek. Shadowing lemma for family of $\varepsilon$-trajectories. Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 65-77. http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a8/
[1] D. Anosov: Geodesic flows on closed Riemannian manifolds of negative curvature. Proceedings of the Steklov Institute of Mathematical 90 (1967) (American Mathematical Society translation). | MR
[2] R. Bowen: Periodic orbits for hyperbolic flows. American Journal of Mathematics 94 (1972) 1-30. | MR | Zbl
[3] R. Bowen: Symbolic dynamics for hyperbolic flows. American Journal of Mathematics 95 (1973), 421-460. | MR | Zbl
[4] J. E. Franke J. F. Selgrade: Hyperbolicity and chain recurrence. Journal of Differential Equations 26 (1977), 27-36. | MR
[5] K. Kato A. Morimoto: Topological stability of Anosov flows and theirs centralizers. Topology 12 (1973), 255-273. | MR
[6] K. Kato A. Morimoto: Topological $\Sigma$-stability of Axiom A flows with no $\Sigma$-explosions. Journal of Differential Equations 34 (1979), 464-481. | MR
[7] A. Katok: Local properties of hyperbolic sets. (in Russian), appendix to the Russian edition of book: Z. Nitecki Differentiable Dynamics, Mir, 1975, 219-232.
[8] J. Moser: On a theorem of Anosov. Journal of Differential Equations 5 (1969), 411-440. | MR | Zbl
[9] Z. Nitecki: Differentiable Dynamics. The MIT Press, 1972.
[10] P. Walters: Asosov diffeomorphisms are topologically stable. Topology 9 (1970), 71-78. | MR