Shadowing lemma for family of $\varepsilon$-trajectories
Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 65-77
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 37C10, 37D99
@article{ARM_1991_27_1-2_a8,
     author = {Nadzieja, Tadek},
     title = {Shadowing lemma for family of $\varepsilon$-trajectories},
     journal = {Archivum mathematicum},
     pages = {65--77},
     year = {1991},
     volume = {27},
     number = {1-2},
     mrnumber = {1189643},
     zbl = {0763.58021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a8/}
}
TY  - JOUR
AU  - Nadzieja, Tadek
TI  - Shadowing lemma for family of $\varepsilon$-trajectories
JO  - Archivum mathematicum
PY  - 1991
SP  - 65
EP  - 77
VL  - 27
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a8/
LA  - en
ID  - ARM_1991_27_1-2_a8
ER  - 
%0 Journal Article
%A Nadzieja, Tadek
%T Shadowing lemma for family of $\varepsilon$-trajectories
%J Archivum mathematicum
%D 1991
%P 65-77
%V 27
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a8/
%G en
%F ARM_1991_27_1-2_a8
Nadzieja, Tadek. Shadowing lemma for family of $\varepsilon$-trajectories. Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 65-77. http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a8/

[1] D. Anosov: Geodesic flows on closed Riemannian manifolds of negative curvature. Proceedings of the Steklov Institute of Mathematical 90 (1967) (American Mathematical Society translation). | MR

[2] R. Bowen: Periodic orbits for hyperbolic flows. American Journal of Mathematics 94 (1972) 1-30. | MR | Zbl

[3] R. Bowen: Symbolic dynamics for hyperbolic flows. American Journal of Mathematics 95 (1973), 421-460. | MR | Zbl

[4] J. E. Franke J. F. Selgrade: Hyperbolicity and chain recurrence. Journal of Differential Equations 26 (1977), 27-36. | MR

[5] K. Kato A. Morimoto: Topological stability of Anosov flows and theirs centralizers. Topology 12 (1973), 255-273. | MR

[6] K. Kato A. Morimoto: Topological $\Sigma$-stability of Axiom A flows with no $\Sigma$-explosions. Journal of Differential Equations 34 (1979), 464-481. | MR

[7] A. Katok: Local properties of hyperbolic sets. (in Russian), appendix to the Russian edition of book: Z. Nitecki Differentiable Dynamics, Mir, 1975, 219-232.

[8] J. Moser: On a theorem of Anosov. Journal of Differential Equations 5 (1969), 411-440. | MR | Zbl

[9] Z. Nitecki: Differentiable Dynamics. The MIT Press, 1972.

[10] P. Walters: Asosov diffeomorphisms are topologically stable. Topology 9 (1970), 71-78. | MR