The heat semigroup acting on tensors or differential forms with values in vector bundle
Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 15-24
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{ARM_1991_27_1-2_a2,
author = {Eichhorn, J\"urgen},
title = {The heat semigroup acting on tensors or differential forms with values in vector bundle},
journal = {Archivum mathematicum},
pages = {15--24},
year = {1991},
volume = {27},
number = {1-2},
mrnumber = {1189637},
zbl = {0774.58038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a2/}
}
Eichhorn, Jürgen. The heat semigroup acting on tensors or differential forms with values in vector bundle. Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 15-24. http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a2/
[1] Y. Baldin, M. H. Noronha: Some complete manifolds with nonnegative curvature operator. Math. Z., 195, (1987), 383-390. | MR
[2] J. Dоdziuk: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J., 32, (1983), 703-716. | MR
[3] Ѕ. Gallоt, D. Mеyеr: Operateur de courbure et Laplacien des formes differentielles d'une variete Riemannienne. J. Math. purеs еt appl., 54, (1975), 259-284. | MR
[4] M. Rееd, B. Ѕimоn: Methods of modern mathematical physics. II, Fоuriеr analysis, sеlf-adjоintnеss, Nеw Yоrk, Acadеmic Prеss, 1975.
[5] R. Ѕ. Ѕtrichartz: Analysis of the Laplacian on the complete Riemannian manifold. J. оf Funct. Analysis, 52, (1983), 48-79. | MR