The heat semigroup acting on tensors or differential forms with values in vector bundle
Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 15-24 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 58J35, 58J50, 58J60
@article{ARM_1991_27_1-2_a2,
     author = {Eichhorn, J\"urgen},
     title = {The heat semigroup acting on tensors or differential forms with values in vector bundle},
     journal = {Archivum mathematicum},
     pages = {15--24},
     year = {1991},
     volume = {27},
     number = {1-2},
     mrnumber = {1189637},
     zbl = {0774.58038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a2/}
}
TY  - JOUR
AU  - Eichhorn, Jürgen
TI  - The heat semigroup acting on tensors or differential forms with values in vector bundle
JO  - Archivum mathematicum
PY  - 1991
SP  - 15
EP  - 24
VL  - 27
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a2/
LA  - en
ID  - ARM_1991_27_1-2_a2
ER  - 
%0 Journal Article
%A Eichhorn, Jürgen
%T The heat semigroup acting on tensors or differential forms with values in vector bundle
%J Archivum mathematicum
%D 1991
%P 15-24
%V 27
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a2/
%G en
%F ARM_1991_27_1-2_a2
Eichhorn, Jürgen. The heat semigroup acting on tensors or differential forms with values in vector bundle. Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 15-24. http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a2/

[1] Y. Baldin, M. H. Noronha: Some complete manifolds with nonnegative curvature operator. Math. Z., 195, (1987), 383-390. | MR

[2] J. Dоdziuk: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J., 32, (1983), 703-716. | MR

[3] Ѕ. Gallоt, D. Mеyеr: Operateur de courbure et Laplacien des formes differentielles d'une variete Riemannienne. J. Math. purеs еt appl., 54, (1975), 259-284. | MR

[4] M. Rееd, B. Ѕimоn: Methods of modern mathematical physics. II, Fоuriеr analysis, sеlf-adjоintnеss, Nеw Yоrk, Acadеmic Prеss, 1975.

[5] R. Ѕ. Ѕtrichartz: Analysis of the Laplacian on the complete Riemannian manifold. J. оf Funct. Analysis, 52, (1983), 48-79. | MR