@article{ARM_1991_27_1-2_a10,
author = {Schimming, Rainer},
title = {A formal series solution of the one-dimensional {Schr\"odinger} equation},
journal = {Archivum mathematicum},
pages = {85--93},
year = {1991},
volume = {27},
number = {1-2},
mrnumber = {1189645},
zbl = {0756.34009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a10/}
}
Schimming, Rainer. A formal series solution of the one-dimensional Schrödinger equation. Archivum mathematicum, Tome 27 (1991) no. 1-2, pp. 85-93. http://geodesic.mathdoc.fr/item/ARM_1991_27_1-2_a10/
[1] M. Adleг, J. Moser: On a Class of Polynomials Connected with the Korteweg-de Vries Equation. Commun. math. Phys. 61 (1978), 1-30. | MR
[2] J. L. Burchnall, T. W. Chaundy: A set of differential equations which can be solved by polynomials. Proc. London Math. Soc. 30 (1929-30), 401-414.
[3] J. Hadamard: Lectures on Cauchy's Problem. Yale University Press, New Haven, 1923.
[4] J. E. Lagnese: A New Differential Operator of the Pure Wave Type. J. Diff. Equ. 1 (1965), 171-187. | MR | Zbl
[5] J. E. Lagnese: The Structure of a Class of Huygens' Operators. J. Math. Mech. 18 (1969), 1195-1201. | MR | Zbl
[6] R. Schimming: Korteweg-de Vries-Hierarchie und Huygenssches Prinzip. Dresdener Seminar zuг Theoretischen Physik Nr. 26, 1986.
[7] R. Schimming: An explicit expression for the Korteweg-de Vries hierarchy. Zeitschrift f. Аnalysis u. ihre Аnw. 7 (1988), 203-214. | MR | Zbl