Remarks on the Nijenhuis tensor and almost complex connections
Archivum mathematicum, Tome 26 (1990) no. 4, pp. 229-239
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53C05, 53C15
@article{ARM_1990_26_4_a5,
     author = {Jany\v{s}ka, Josef},
     title = {Remarks on the {Nijenhuis} tensor and almost complex connections},
     journal = {Archivum mathematicum},
     pages = {229--239},
     year = {1990},
     volume = {26},
     number = {4},
     mrnumber = {1188975},
     zbl = {0738.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1990_26_4_a5/}
}
TY  - JOUR
AU  - Janyška, Josef
TI  - Remarks on the Nijenhuis tensor and almost complex connections
JO  - Archivum mathematicum
PY  - 1990
SP  - 229
EP  - 239
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1990_26_4_a5/
LA  - en
ID  - ARM_1990_26_4_a5
ER  - 
%0 Journal Article
%A Janyška, Josef
%T Remarks on the Nijenhuis tensor and almost complex connections
%J Archivum mathematicum
%D 1990
%P 229-239
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1990_26_4_a5/
%G en
%F ARM_1990_26_4_a5
Janyška, Josef. Remarks on the Nijenhuis tensor and almost complex connections. Archivum mathematicum, Tome 26 (1990) no. 4, pp. 229-239. http://geodesic.mathdoc.fr/item/ARM_1990_26_4_a5/

[1] J. Janyška: Geometrical properties of prolongation functors. Čas. pěst. mat., 110 (1985), 77-86. | MR

[2] S. Kobayashi K. Nomizu: Foundations of Differential Geometry, II. Interscience, New York, 1969.

[3] D. Krupka: Elementary theory of differential invariants. Arch. Math. (Brno) 4 (1978), 207-214. | MR | Zbl

[4] D. Krupka: Local invariants of a linear connection. Coll. Math. Soc. János Bolyai, 31. Differential Geometry, Budapest (Hungary), 1979, North Holland 1982, 349-369. | MR

[5] D. Krupka J. Janyška: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purkyně an ae. Brunensis, Matematica 1, Brno, 1990 | MR

[6] D. Krupka V. Mikolášová: On the uniqueness of some differential invariants: d, [,], $\nabla$. Czechoslovak Math. J. 34 (109) (1984), 588-597. | MR

[7] A. Nijenhuis: Natural bundles and their general properties. Differential Geometry, in honour of K. Yano, Kinokuniya, Tokyo, 1972, 317-334. | MR | Zbl

[8] Chuu Lian Terng: Natural vector bundles and natural differential operators. Amer. J. Math. 100 (1978), 775-828. | MR

[9] K. Yano: Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, New York, 1964. | MR