On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity
Archivum mathematicum, Tome 26 (1990) no. 2-3, pp. 83-91 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A34, 34C10, 34C15
@article{ARM_1990_26_2-3_a3,
     author = {Bartu\v{s}ek, Miroslav},
     title = {On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity},
     journal = {Archivum mathematicum},
     pages = {83--91},
     year = {1990},
     volume = {26},
     number = {2-3},
     mrnumber = {1188266},
     zbl = {0729.34018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a3/}
}
TY  - JOUR
AU  - Bartušek, Miroslav
TI  - On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity
JO  - Archivum mathematicum
PY  - 1990
SP  - 83
EP  - 91
VL  - 26
IS  - 2-3
UR  - http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a3/
LA  - en
ID  - ARM_1990_26_2-3_a3
ER  - 
%0 Journal Article
%A Bartušek, Miroslav
%T On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity
%J Archivum mathematicum
%D 1990
%P 83-91
%V 26
%N 2-3
%U http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a3/
%G en
%F ARM_1990_26_2-3_a3
Bartušek, Miroslav. On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity. Archivum mathematicum, Tome 26 (1990) no. 2-3, pp. 83-91. http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a3/

[1] M. Bartušek: The Asymptotic Behaviour of Oscillatory Solutions of the Equation of the Fourth Order. Arch. Math. (Brno), 21, No. 2 (1985), 93-104. | MR

12] M. Bartušek: On Properties of Oscillatory Solutions of Non-linear Differential Equations of the n-th Order. Differential Equations and Their Applications, Equadiff 6, Proc. бth Int. Coпf. Brno, Lecture Notes Matћ., 1192, 107-113.

13] M. Bartušek: On Oscillatory Solution of the Differential Equation of the n-th Order. Arch. Math. (Brno), 22, No. 3 (1986), 145-156. | MR

[4] M. Bartušek: On Proper Oscillatory Solutions of the Non-linear Differential Equations of the n-th Order. Arch. Math. (Brno), 24, No. 2 (1988), 89-98. | MR

[5] F. Beckeпbach R. Bellman: Inequalities. Springeг Verlag, Berlin, 1961. | MR

16] И. T. Қигypaдзe: Heкomopыe cuнгyляpныe кpaeвыe зaдaчu для oбыкнoвeнныx дuффepeнцuaльныx ypaянeнuщ. Из. Tбилиc. yнив., Tбилиcи, 1975.

[7] I. T. Kiguradze: On Vanishing at Infinity of Solutions of Ordinary Differential Equations. Czech. Math. J., 33 (108) 1983, 613-646. | MR | Zbl

[8] И. T. Kигypaдзe: Oб oднoй кpaeвoй зaдaчe c ycлoвueм нa бecкoнeчнocmu для oбыкнoвeнныx дuффepeнuuaльныx ypaвнeнuй выcшux nopядкoв. Tp. Bcecoюзнoгo cимпoзиyмa в Tбилиcи 21-23 aп. 1982 г. Изд. Tбилиc. yн-тa, Tбилиcи 1986, 91-105.

[9] J. S. E. Wong: On the Generalized Emden-Fowler Equation. SIAM Rev., 17, No. 2, 1975, 339-360. | MR | Zbl