@article{ARM_1990_26_2-3_a3,
author = {Bartu\v{s}ek, Miroslav},
title = {On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity},
journal = {Archivum mathematicum},
pages = {83--91},
year = {1990},
volume = {26},
number = {2-3},
mrnumber = {1188266},
zbl = {0729.34018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a3/}
}
TY - JOUR AU - Bartušek, Miroslav TI - On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity JO - Archivum mathematicum PY - 1990 SP - 83 EP - 91 VL - 26 IS - 2-3 UR - http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a3/ LA - en ID - ARM_1990_26_2-3_a3 ER -
Bartušek, Miroslav. On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity. Archivum mathematicum, Tome 26 (1990) no. 2-3, pp. 83-91. http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a3/
[1] M. Bartušek: The Asymptotic Behaviour of Oscillatory Solutions of the Equation of the Fourth Order. Arch. Math. (Brno), 21, No. 2 (1985), 93-104. | MR
12] M. Bartušek: On Properties of Oscillatory Solutions of Non-linear Differential Equations of the n-th Order. Differential Equations and Their Applications, Equadiff 6, Proc. бth Int. Coпf. Brno, Lecture Notes Matћ., 1192, 107-113.
13] M. Bartušek: On Oscillatory Solution of the Differential Equation of the n-th Order. Arch. Math. (Brno), 22, No. 3 (1986), 145-156. | MR
[4] M. Bartušek: On Proper Oscillatory Solutions of the Non-linear Differential Equations of the n-th Order. Arch. Math. (Brno), 24, No. 2 (1988), 89-98. | MR
[5] F. Beckeпbach R. Bellman: Inequalities. Springeг Verlag, Berlin, 1961. | MR
16] И. T. Қигypaдзe: Heкomopыe cuнгyляpныe кpaeвыe зaдaчu для oбыкнoвeнныx дuффepeнцuaльныx ypaянeнuщ. Из. Tбилиc. yнив., Tбилиcи, 1975.
[7] I. T. Kiguradze: On Vanishing at Infinity of Solutions of Ordinary Differential Equations. Czech. Math. J., 33 (108) 1983, 613-646. | MR | Zbl
[8] И. T. Kигypaдзe: Oб oднoй кpaeвoй зaдaчe c ycлoвueм нa бecкoнeчнocmu для oбыкнoвeнныx дuффepeнuuaльныx ypaвнeнuй выcшux nopядкoв. Tp. Bcecoюзнoгo cимпoзиyмa в Tбилиcи 21-23 aп. 1982 г. Изд. Tбилиc. yн-тa, Tбилиcи 1986, 91-105.
[9] J. S. E. Wong: On the Generalized Emden-Fowler Equation. SIAM Rev., 17, No. 2, 1975, 339-360. | MR | Zbl