On Halphen and Laguerre-Forsyth canonical forms of linear differential equations
Archivum mathematicum, Tome 26 (1990) no. 2-3, pp. 147-154 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C20
@article{ARM_1990_26_2-3_a11,
     author = {Neuman, Franti\v{s}ek},
     title = {On {Halphen} and {Laguerre-Forsyth} canonical forms of linear differential equations},
     journal = {Archivum mathematicum},
     pages = {147--154},
     year = {1990},
     volume = {26},
     number = {2-3},
     mrnumber = {1188274},
     zbl = {0729.34008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a11/}
}
TY  - JOUR
AU  - Neuman, František
TI  - On Halphen and Laguerre-Forsyth canonical forms of linear differential equations
JO  - Archivum mathematicum
PY  - 1990
SP  - 147
EP  - 154
VL  - 26
IS  - 2-3
UR  - http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a11/
LA  - en
ID  - ARM_1990_26_2-3_a11
ER  - 
%0 Journal Article
%A Neuman, František
%T On Halphen and Laguerre-Forsyth canonical forms of linear differential equations
%J Archivum mathematicum
%D 1990
%P 147-154
%V 26
%N 2-3
%U http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a11/
%G en
%F ARM_1990_26_2-3_a11
Neuman, František. On Halphen and Laguerre-Forsyth canonical forms of linear differential equations. Archivum mathematicum, Tome 26 (1990) no. 2-3, pp. 147-154. http://geodesic.mathdoc.fr/item/ARM_1990_26_2-3_a11/

[1] J. M. Berkovich: Canonical forms of ordinary linear differential equations. Arch. Math. (Brno) 24 (1988), 25-42. | MR | Zbl

[2] G. D. Birkhoff: On the solutions of ordinary linear homogeneous differential equations of the third order. Ann. of Math. 12 (1910/11), 103-123.

[3] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung. VEB, Berlin 1967; English edition: Linear Differential Transformations of the Second Order, The English Univ. Press, London 1971. | MR

[4] M. Čadek: Form of general pointwise transformations of linear differential equations. Czechoslovak Math. J. 35 (110) (1985), 617-624. | MR

[5] A. R. Forsyth: Invariants, covariants and quotient-derivatives associated with linear differential equations. Philos. Trans. Roy. Soc. London Ser. A, 179 (1899), 377-489.

[6] G. H. Halphen: Mémoire sur la réduction des équations différentielles linéaires aux formes intégrables. Mémoires presented par divers savants á l'Académie des sciences de l'Institut de France 28 (1884), 1-307.

[7] Z. Hustý: Die Iteration homogener linearer Differentialgleichungen. Publ. Fac. Sci. Univ. J. E. Purkyně (Brno) 449 (1964), 23-56. | MR

[8] E. Laguerre: Sur les équations différentielles linéaires du troisième ordre. C. R. Acad. Sci. Paris 88 (1879), 116-118.

[9] F. Neuman: Geometrical approach to linear differential equations of the n-th order. Rend. Mat. 5 (1972), 579-602. (Abstract: Some results on geometrical approach to linear differential equations of the n-th order. Comment. Math. Univ. Carolin. 12 (1971), 307-315). | MR | Zbl

[10] F. Neuman: Global canonical forms of linear differential equations. Math. Slovaca 33 (1983), 389-394. | MR

[11] F. Neuman: Criterion of global equivalence of linear differential equations. Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 217-221. | MR | Zbl

[12] F. Neuman: Global theory of ordinary linear homogeneous differential equations in the real domain. I and II, Aequationes Math. 33 and 34 (1987), 123-149 and 1-22. | MR | Zbl

[13] P. Stäckel: Über Transformationen von Differentialgleichungen. J. Reine Angew. Math. 111 (1893), 290-302.

[14] E. J. Wilczynski: Projective differential geometry of curves and ruled surfaces. Teubner, Leipzig, 1906.