Asymptotic and oscillatory behavior of solutions of differential equations with advanced arguments
Archivum mathematicum, Tome 26 (1990) no. 1, pp. 55-63 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10, 34K99
@article{ARM_1990_26_1_a6,
     author = {Akinyele, Olusola and Dahiya, R. S.},
     title = {Asymptotic and oscillatory behavior of solutions of differential equations with advanced arguments},
     journal = {Archivum mathematicum},
     pages = {55--63},
     year = {1990},
     volume = {26},
     number = {1},
     mrnumber = {1188074},
     zbl = {0731.34081},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a6/}
}
TY  - JOUR
AU  - Akinyele, Olusola
AU  - Dahiya, R. S.
TI  - Asymptotic and oscillatory behavior of solutions of differential equations with advanced arguments
JO  - Archivum mathematicum
PY  - 1990
SP  - 55
EP  - 63
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a6/
LA  - en
ID  - ARM_1990_26_1_a6
ER  - 
%0 Journal Article
%A Akinyele, Olusola
%A Dahiya, R. S.
%T Asymptotic and oscillatory behavior of solutions of differential equations with advanced arguments
%J Archivum mathematicum
%D 1990
%P 55-63
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a6/
%G en
%F ARM_1990_26_1_a6
Akinyele, Olusola; Dahiya, R. S. Asymptotic and oscillatory behavior of solutions of differential equations with advanced arguments. Archivum mathematicum, Tome 26 (1990) no. 1, pp. 55-63. http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a6/

[1] O. Akinyele, R. S. Dahiya: Asymptotic behavior of solutions of n-th order differential equations with or without delay. Proceedings of the Vth International Conference on Trends in Theoгy and Practice of Non-linear Differential Equations, University of Texas, Arlington, June 1982; Maгcel Dekker, Inc, New Yoгk (1984), 9-12. | MR

[2] I. Bihari: A generalization of Lemma of Bellman and its applications to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hungary, 7 (1956), 81-94. | MR

[3] D. S. Cohen: The asymptotic behavior of a class of non-linear differential equations. Proc. Amer. Math. Soc., 18 (1967), 607-609. | MR

[4] R. S. Dahiya, O. Akinyele: Oscillation theorems of nth order functional differential equations with forcing terms. Journal of Mathematical Analysis and Applications, Vol. 109, No. 2 (1985), 158-165. | MR | Zbl

[5] I. T. Kiguradze: On the question of variability of solutions of nonlinear differential equations. Differenciaľnye Uravnenija 1 (1965), 995-1006, [Transl. Differential Equations 1 (1965), 773-782]. | MR

[6] V. N. Sevelo, N. V. Vareh: On oscillability of solutions of higher order linear differential equations with retarded arguments. Ukrain. Mat. Z. 24 (1972), 513-520 (Russian). | MR

[7] Y. P. Singh: The asymptotic behavior of solutions of a nonlinear nth order differential equations. Math. J. Okayama Univ. 15 (1971), no. 1, 71-73. | MR

[8] J. C. Tong: The asymptotic behavior of a class of nonlinear differential equations of second order. Proc. Amer. Math. Soc. 84 (1982), no. 2, 235-236. | MR | Zbl