@article{ARM_1990_26_1_a0,
author = {Taskovi\'c, Milan R.},
title = {Edge theorem for finite partially ordered sets},
journal = {Archivum mathematicum},
pages = {1--5},
year = {1990},
volume = {26},
number = {1},
mrnumber = {1188068},
zbl = {0727.06005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a0/}
}
Tasković, Milan R. Edge theorem for finite partially ordered sets. Archivum mathematicum, Tome 26 (1990) no. 1, pp. 1-5. http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a0/
[1] K. Baclawski, A. Björner: Fixed points in partially ordered sets. Advances in Math. 31 (1979), 263-287. | MR
[2] C. Blair, A. Roth: An extension and simple proof of a constrained lattice fixed point theorem. Algebra Universalis 9 (1979), 131 -132. | MR | Zbl
[3] J. Klimeš: Fixed edge theorems for complete lattices. Arch. Math. 4. scripta, 17 (1981), 227-234.
[4] D. Kurepa: Fixpoints of decreasing mappings of ordered sets. Publ. Inst. Math., 32 (1975), 111-116. | MR | Zbl
[5] I. Rival: A fixed point theorem for finite partially ordered sets. J. Combin. Theory, 21 (A), 1976, 309-318. | MR
[6] A. Tarski: A lattice theoretical fixpoint theorem and its applications. Pacific J. Math., 5 (1955), 283-309. | MR | Zbl
[7] A. Björner: Order-reversing maps and unique fixed points in complete lattices. Algebra Universalis 12 (1981), 402-403. | MR