Edge theorem for finite partially ordered sets
Archivum mathematicum, Tome 26 (1990) no. 1, pp. 1-5 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05A05, 06A06
@article{ARM_1990_26_1_a0,
     author = {Taskovi\'c, Milan R.},
     title = {Edge theorem for finite partially ordered sets},
     journal = {Archivum mathematicum},
     pages = {1--5},
     year = {1990},
     volume = {26},
     number = {1},
     mrnumber = {1188068},
     zbl = {0727.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a0/}
}
TY  - JOUR
AU  - Tasković, Milan R.
TI  - Edge theorem for finite partially ordered sets
JO  - Archivum mathematicum
PY  - 1990
SP  - 1
EP  - 5
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a0/
LA  - en
ID  - ARM_1990_26_1_a0
ER  - 
%0 Journal Article
%A Tasković, Milan R.
%T Edge theorem for finite partially ordered sets
%J Archivum mathematicum
%D 1990
%P 1-5
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a0/
%G en
%F ARM_1990_26_1_a0
Tasković, Milan R. Edge theorem for finite partially ordered sets. Archivum mathematicum, Tome 26 (1990) no. 1, pp. 1-5. http://geodesic.mathdoc.fr/item/ARM_1990_26_1_a0/

[1] K. Baclawski, A. Björner: Fixed points in partially ordered sets. Advances in Math. 31 (1979), 263-287. | MR

[2] C. Blair, A. Roth: An extension and simple proof of a constrained lattice fixed point theorem. Algebra Universalis 9 (1979), 131 -132. | MR | Zbl

[3] J. Klimeš: Fixed edge theorems for complete lattices. Arch. Math. 4. scripta, 17 (1981), 227-234.

[4] D. Kurepa: Fixpoints of decreasing mappings of ordered sets. Publ. Inst. Math., 32 (1975), 111-116. | MR | Zbl

[5] I. Rival: A fixed point theorem for finite partially ordered sets. J. Combin. Theory, 21 (A), 1976, 309-318. | MR

[6] A. Tarski: A lattice theoretical fixpoint theorem and its applications. Pacific J. Math., 5 (1955), 283-309. | MR | Zbl

[7] A. Björner: Order-reversing maps and unique fixed points in complete lattices. Algebra Universalis 12 (1981), 402-403. | MR