Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$
Archivum mathematicum, Tome 25 (1989) no. 4, pp. 195-206 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34D05, 34D20
@article{ARM_1989_25_4_a2,
     author = {Kalas, Josef},
     title = {Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$},
     journal = {Archivum mathematicum},
     pages = {195--206},
     year = {1989},
     volume = {25},
     number = {4},
     mrnumber = {1188064},
     zbl = {0702.34042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a2/}
}
TY  - JOUR
AU  - Kalas, Josef
TI  - Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$
JO  - Archivum mathematicum
PY  - 1989
SP  - 195
EP  - 206
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a2/
LA  - en
ID  - ARM_1989_25_4_a2
ER  - 
%0 Journal Article
%A Kalas, Josef
%T Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$
%J Archivum mathematicum
%D 1989
%P 195-206
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a2/
%G en
%F ARM_1989_25_4_a2
Kalas, Josef. Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$. Archivum mathematicum, Tome 25 (1989) no. 4, pp. 195-206. http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a2/

[1] J. Kalas: On a "Liapunov-like" function for an equation $\dot{z} =f(t,z)$ with a complex-valued function f. Aгch. Math. (Brno) 18 (1982), 65-76. | MR

[2] J. Kalas: Asymptotic nature of solutions of the equation ż = f(t,z) with a complex-valued function f. Arch. Math. (Brno) 20 (1984), 83-94. | MR

[3] J. Kalas: Some results on the asymptotic behaviour of the equation ż = f(t,z) with a complex-valued function f. Arch. Math. (Brno) 21 (1985), 195-199. | MR

[4] J. Kalas: Contributions to the asymptotic behaviour of the equation ż = f(t, z) with a complex-valued function f. to appear. | MR

[5] C. Kulig: On a system of differential equations. Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat. Zeszyt 9, 77 (1963), 37-48. | MR | Zbl

[6] M. Ráb: Equation $Z' =A(t) - Z^2$, coefficient of which has a small modulus. Czech. Math. J. 21 (96) 1971, 311-317. | MR

[7] M. Ráb: Geometrical ąpproach to the study of the Riccati differential equation with complex-valued coefficients. J. Diff. Equations 25 (1977), 108-114. | MR

[8] Z. Tesařová: The Riccati differential equation with complex-valued coefficients and application to the equation $x'' +P(t)x' + Q(t)x = 0$. Aгch. Math. (Brno) 18 (1982), 133-143. | MR | Zbl