@article{ARM_1989_25_4_a2,
author = {Kalas, Josef},
title = {Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$},
journal = {Archivum mathematicum},
pages = {195--206},
year = {1989},
volume = {25},
number = {4},
mrnumber = {1188064},
zbl = {0702.34042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a2/}
}
Kalas, Josef. Asymptotic behaviour of the equation $\dot z=G(t,z)[h(z)+g(t,z)]$. Archivum mathematicum, Tome 25 (1989) no. 4, pp. 195-206. http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a2/
[1] J. Kalas: On a "Liapunov-like" function for an equation $\dot{z} =f(t,z)$ with a complex-valued function f. Aгch. Math. (Brno) 18 (1982), 65-76. | MR
[2] J. Kalas: Asymptotic nature of solutions of the equation ż = f(t,z) with a complex-valued function f. Arch. Math. (Brno) 20 (1984), 83-94. | MR
[3] J. Kalas: Some results on the asymptotic behaviour of the equation ż = f(t,z) with a complex-valued function f. Arch. Math. (Brno) 21 (1985), 195-199. | MR
[4] J. Kalas: Contributions to the asymptotic behaviour of the equation ż = f(t, z) with a complex-valued function f. to appear. | MR
[5] C. Kulig: On a system of differential equations. Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat. Zeszyt 9, 77 (1963), 37-48. | MR | Zbl
[6] M. Ráb: Equation $Z' =A(t) - Z^2$, coefficient of which has a small modulus. Czech. Math. J. 21 (96) 1971, 311-317. | MR
[7] M. Ráb: Geometrical ąpproach to the study of the Riccati differential equation with complex-valued coefficients. J. Diff. Equations 25 (1977), 108-114. | MR
[8] Z. Tesařová: The Riccati differential equation with complex-valued coefficients and application to the equation $x'' +P(t)x' + Q(t)x = 0$. Aгch. Math. (Brno) 18 (1982), 133-143. | MR | Zbl