On iteration groups of certain functions
Archivum mathematicum, Tome 25 (1989) no. 4, pp. 185-194 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 39B12, 39B52
@article{ARM_1989_25_4_a1,
     author = {Neuman, Franti\v{s}ek},
     title = {On iteration groups of certain functions},
     journal = {Archivum mathematicum},
     pages = {185--194},
     year = {1989},
     volume = {25},
     number = {4},
     mrnumber = {1188063},
     zbl = {0721.39002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a1/}
}
TY  - JOUR
AU  - Neuman, František
TI  - On iteration groups of certain functions
JO  - Archivum mathematicum
PY  - 1989
SP  - 185
EP  - 194
VL  - 25
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a1/
LA  - en
ID  - ARM_1989_25_4_a1
ER  - 
%0 Journal Article
%A Neuman, František
%T On iteration groups of certain functions
%J Archivum mathematicum
%D 1989
%P 185-194
%V 25
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a1/
%G en
%F ARM_1989_25_4_a1
Neuman, František. On iteration groups of certain functions. Archivum mathematicum, Tome 25 (1989) no. 4, pp. 185-194. http://geodesic.mathdoc.fr/item/ARM_1989_25_4_a1/

[1] G. Blanton, J. A. Baker: Iteration groups generated by $C^n$ functions. Arch. Math (Brno) 19 (1982), 121-127. | MR

[2] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung. VEB Berlin 1967. Linear Differential Transformations of the Second Order. The English Univ. Press, London 1971.

[3] O. Hölder: Die Axiome der Quantität and die Lehre vom Mass. Ber. Verk. Sächs. Ges. Wiss. Leipzig, Math. Phys, Cl. 53 (1901), 1-64.

[4] A. I. Kokorin, V. M. Kopytov: Linejno oporyadochennye gruppy. Nauka, Moskva 1972. | MR

[5] F. Neuman: Stationary groups of linear differentiaІ equations. Czechoslovak Math. J. 34 (109) (1984), 645-663. (C. R. Acad. Sci. Paris Ser. I Math. 229 (1984), 319-322). | MR

[6] F. Neuman: Ordinary Linear Differential Equations. Academia, Prague & North Oxford Academic Publishers Ltd., Oxford 1989.