Necessary and sufficient conditions for finally vanishing oscillatory solutions in second order delay equations
Archivum mathematicum, Tome 25 (1989) no. 3, pp. 137-148
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10, 34K25, 34K99
@article{ARM_1989_25_3_a2,
     author = {Singh, Bhagat},
     title = {Necessary and sufficient conditions for finally vanishing oscillatory solutions in second order delay equations},
     journal = {Archivum mathematicum},
     pages = {137--148},
     year = {1989},
     volume = {25},
     number = {3},
     mrnumber = {1188059},
     zbl = {0702.34061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a2/}
}
TY  - JOUR
AU  - Singh, Bhagat
TI  - Necessary and sufficient conditions for finally vanishing oscillatory solutions in second order delay equations
JO  - Archivum mathematicum
PY  - 1989
SP  - 137
EP  - 148
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a2/
LA  - en
ID  - ARM_1989_25_3_a2
ER  - 
%0 Journal Article
%A Singh, Bhagat
%T Necessary and sufficient conditions for finally vanishing oscillatory solutions in second order delay equations
%J Archivum mathematicum
%D 1989
%P 137-148
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a2/
%G en
%F ARM_1989_25_3_a2
Singh, Bhagat. Necessary and sufficient conditions for finally vanishing oscillatory solutions in second order delay equations. Archivum mathematicum, Tome 25 (1989) no. 3, pp. 137-148. http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a2/

[1] N. P. Bhatia (1966): Some oscillation theorems for second order differential equations. J. Math. Anal. Appl. 15, 442-446. | MR

[2] J. S. Bradley (1970): Oscillation theorems for a second order delay equation. J. Differential Equations, 8, 397-403. | MR

[3] J. R. Graef (1977): Oscillation, nonoscillation, and growth of solutions of nonlinear functional differential equations of arbitrary order. J. Math. Anal. Appl. 60, 398-409. | MR

[4] J. R. Graef, P. W. Spikes (1977): Asymptotic properties of functional differential equations of arbitrary order. J. Math. Anal. Appl. 60, 339-348. | MR

[5] M. E. Hammett (1971): Nonoscillation properties of a nonlinear differential equation. Pгoc. Amer. Math. Soc. 30, 92-96. | MR

[6] S. O. Londen (1973): Some nonoscillation theorems for a second order nonlinear differential equation. SIAM J. Math. Anal., 4, 460-465. | MR

[7] B. Singh (1973): Oscitlation and nonoscillation of even order nonlinear delay-differential equations. Qualt. Appl. Math., 31, 343-349. | MR

[8] B. Singh (1975): Asymptotic nature of nonoscillatory solutions of nth order retarded differential equations. SIAM J. Math. Anal. Appl. 6, 784-795. | MR

[9] B. Singh (1976): Asymptotically vanishing oscillatory trajectories in second order retarded equations. SIAM J. Math. Anal. 7, 37-44. | MR

[10] B. Singh (1976): General functional differential equations and their asymptotic oscillatory behavior. Yokohama Math. J. 24, 125-132. | MR

[11] B. Singh (1975): Impact of delays on oscillation in general functional equations. Hiroshima Math.J. 5, 351-361. | MR

[12] B. Singћ (1976): Forced nonoscillations in fourth order functional equations. Funkcial. Ekvac. 19, 227-237. | MR

[13] C. C. Travis (1972): Oscillation theorems for second order differential equations. Pгoc. Amer. Math. Soc. 31, 199-201. | MR

[14] T. Wallgren (1976): Oscillation of solutions of the differential equation y" + p(x)y = f(x). SIAM J. Math. Anal. 7, 848-857. | MR