@article{ARM_1989_25_3_a1,
author = {Taskovi\'c, Milan R.},
title = {Antimorphisms of partially ordered sets},
journal = {Archivum mathematicum},
pages = {127--135},
year = {1989},
volume = {25},
number = {3},
mrnumber = {1188058},
zbl = {0699.06005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a1/}
}
Tasković, Milan R. Antimorphisms of partially ordered sets. Archivum mathematicum, Tome 25 (1989) no. 3, pp. 127-135. http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a1/
[1] A. Abian: A fixed point theorem for nonincreasing mappings. Boll. Un. Mat. Ital. 2 (1969), 200-201. | MR
[2] S. Abian A. Brown: A theorem on partially ordered sets with applications to fixed point theorem. Canad. J. Math. 13 (1961), 78-82. | MR
[3] A. Davis: A characterization of complete lattice. Pacific J. Math. 5 (1955), 311-319. | MR
[4] P. H. Edelman: On a fixed point theorem for partially ordered set. Discrete Math. 15 (1979), 117-119. | MR
[5] Dj. Kurepa: Fixpoints of monotone mapping of oredered sets. Glasnik Mat. fiz. astr. 19 (1964), 167-173. | MR
[6] Dj. Kurepa: Fixpoints of decreasing mapping of ordered sets. Publ. Inst. Math. Beograd (N. S.) 18 (32) (1975), 111-116. | MR
[7] F. Metcalf T. H. Payne: On the existence of fixed points in a totally ordered set. Proc. Amer. Math. Soc. 31 (1972), 441-444. | MR
[8] H., M. Höft: Some fixed point theorems for partially ordered sets. Canad. J. Math. 28 (1976), 992-997. | MR
[9] I. Rival: A fixed point theorem for finite partially ordered sets. J. Combin. Theory Seг. A 21 (1976), 309-318. | MR
[10] R. Smithson: Fixed points in partially ordered sets. Pacific J. Math. 45 (1973), 363-367. | MR | Zbl
[11] Z. Shmuely: Fixed points of antitone mappings. Proc. Amer. Math. Soc. 52 (1975), 503-505. | MR | Zbl
[12] A. Taгski: A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309. | MR
[13] M. Taskovič: Banach's mappings of fixed points on spaces and ordered sets. Thesis, Math. Balcanica 9 (1979), p. 130.
[14] M. Taskovič: Partially ordered sets and some fixed point theorems. Publ. Inst. Math. Beograd (N. S.) 27 (41) (1980), 241-247. | MR
[15] L. E. Ward: Completeness in semilattices. Canad. J. Math. 9 (1957), 578-582. | MR
[16] W. S. Wong: Common fixed points of commuting monotone mappings. Canad. J. Math. 19 (1967), 617-620. | MR | Zbl