Antimorphisms of partially ordered sets
Archivum mathematicum, Tome 25 (1989) no. 3, pp. 127-135 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05A15, 06A06
@article{ARM_1989_25_3_a1,
     author = {Taskovi\'c, Milan R.},
     title = {Antimorphisms of partially ordered sets},
     journal = {Archivum mathematicum},
     pages = {127--135},
     year = {1989},
     volume = {25},
     number = {3},
     mrnumber = {1188058},
     zbl = {0699.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a1/}
}
TY  - JOUR
AU  - Tasković, Milan R.
TI  - Antimorphisms of partially ordered sets
JO  - Archivum mathematicum
PY  - 1989
SP  - 127
EP  - 135
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a1/
LA  - en
ID  - ARM_1989_25_3_a1
ER  - 
%0 Journal Article
%A Tasković, Milan R.
%T Antimorphisms of partially ordered sets
%J Archivum mathematicum
%D 1989
%P 127-135
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a1/
%G en
%F ARM_1989_25_3_a1
Tasković, Milan R. Antimorphisms of partially ordered sets. Archivum mathematicum, Tome 25 (1989) no. 3, pp. 127-135. http://geodesic.mathdoc.fr/item/ARM_1989_25_3_a1/

[1] A. Abian: A fixed point theorem for nonincreasing mappings. Boll. Un. Mat. Ital. 2 (1969), 200-201. | MR

[2] S. Abian A. Brown: A theorem on partially ordered sets with applications to fixed point theorem. Canad. J. Math. 13 (1961), 78-82. | MR

[3] A. Davis: A characterization of complete lattice. Pacific J. Math. 5 (1955), 311-319. | MR

[4] P. H. Edelman: On a fixed point theorem for partially ordered set. Discrete Math. 15 (1979), 117-119. | MR

[5] Dj. Kurepa: Fixpoints of monotone mapping of oredered sets. Glasnik Mat. fiz. astr. 19 (1964), 167-173. | MR

[6] Dj. Kurepa: Fixpoints of decreasing mapping of ordered sets. Publ. Inst. Math. Beograd (N. S.) 18 (32) (1975), 111-116. | MR

[7] F. Metcalf T. H. Payne: On the existence of fixed points in a totally ordered set. Proc. Amer. Math. Soc. 31 (1972), 441-444. | MR

[8] H., M. Höft: Some fixed point theorems for partially ordered sets. Canad. J. Math. 28 (1976), 992-997. | MR

[9] I. Rival: A fixed point theorem for finite partially ordered sets. J. Combin. Theory Seг. A 21 (1976), 309-318. | MR

[10] R. Smithson: Fixed points in partially ordered sets. Pacific J. Math. 45 (1973), 363-367. | MR | Zbl

[11] Z. Shmuely: Fixed points of antitone mappings. Proc. Amer. Math. Soc. 52 (1975), 503-505. | MR | Zbl

[12] A. Taгski: A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309. | MR

[13] M. Taskovič: Banach's mappings of fixed points on spaces and ordered sets. Thesis, Math. Balcanica 9 (1979), p. 130.

[14] M. Taskovič: Partially ordered sets and some fixed point theorems. Publ. Inst. Math. Beograd (N. S.) 27 (41) (1980), 241-247. | MR

[15] L. E. Ward: Completeness in semilattices. Canad. J. Math. 9 (1957), 578-582. | MR

[16] W. S. Wong: Common fixed points of commuting monotone mappings. Canad. J. Math. 19 (1967), 617-620. | MR | Zbl