Remarks on Hamiltonian properties of squares of graphs
Archivum mathematicum, Tome 25 (1989) no. 1-2, pp. 61-72 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C45
@article{ARM_1989_25_1-2_a8,
     author = {Schaar, G\"unter},
     title = {Remarks on {Hamiltonian} properties of squares of graphs},
     journal = {Archivum mathematicum},
     pages = {61--72},
     year = {1989},
     volume = {25},
     number = {1-2},
     mrnumber = {1189200},
     zbl = {0722.05048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a8/}
}
TY  - JOUR
AU  - Schaar, Günter
TI  - Remarks on Hamiltonian properties of squares of graphs
JO  - Archivum mathematicum
PY  - 1989
SP  - 61
EP  - 72
VL  - 25
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a8/
LA  - en
ID  - ARM_1989_25_1-2_a8
ER  - 
%0 Journal Article
%A Schaar, Günter
%T Remarks on Hamiltonian properties of squares of graphs
%J Archivum mathematicum
%D 1989
%P 61-72
%V 25
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a8/
%G en
%F ARM_1989_25_1-2_a8
Schaar, Günter. Remarks on Hamiltonian properties of squares of graphs. Archivum mathematicum, Tome 25 (1989) no. 1-2, pp. 61-72. http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a8/

[1] G. Chartrand A. M. Hobbs H. A. Jung S. F. Kapoor, C. St. J. A. Nash-Williams: The square of a block is Hamiltonian connected. J. Combinatorial Theory B, 16, 1974, 290-292. | MR

[2] H. Fleischner: On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs. J. Combinatorial Theory B, 16, No. 1, 1974, 17-28. | MR | Zbl

[3] H. Fleischner: The square of every two-connected graph is Hamiltonian. J. Combinatorial Theory 3, 16, No. 1, 1974, 29-34. | MR | Zbl

[4] C. St. J. A. Nash-Williams: Problem No. 48; Theory of graphs. (edited by P. Erdös and G. Katona), New York, Academic Press 1968.

[5] M. D. Plummer: On minimal blocks. Trans. Ameг. Math. Soc. 134, 1968, 85-94. | MR | Zbl

[6] St. Říha: A new proof of the theorem by Fleischner. to appeaг.

[7] M. Sekanina: Problem No. 28, Theory of graphs and its Applications. Czechoslovak. Acad. of Sciences, Prague, 1964.

[8] Z. Skupien T. Traczyk: Personal communication.