@article{ARM_1989_25_1-2_a8,
author = {Schaar, G\"unter},
title = {Remarks on {Hamiltonian} properties of squares of graphs},
journal = {Archivum mathematicum},
pages = {61--72},
year = {1989},
volume = {25},
number = {1-2},
mrnumber = {1189200},
zbl = {0722.05048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a8/}
}
Schaar, Günter. Remarks on Hamiltonian properties of squares of graphs. Archivum mathematicum, Tome 25 (1989) no. 1-2, pp. 61-72. http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a8/
[1] G. Chartrand A. M. Hobbs H. A. Jung S. F. Kapoor, C. St. J. A. Nash-Williams: The square of a block is Hamiltonian connected. J. Combinatorial Theory B, 16, 1974, 290-292. | MR
[2] H. Fleischner: On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs. J. Combinatorial Theory B, 16, No. 1, 1974, 17-28. | MR | Zbl
[3] H. Fleischner: The square of every two-connected graph is Hamiltonian. J. Combinatorial Theory 3, 16, No. 1, 1974, 29-34. | MR | Zbl
[4] C. St. J. A. Nash-Williams: Problem No. 48; Theory of graphs. (edited by P. Erdös and G. Katona), New York, Academic Press 1968.
[5] M. D. Plummer: On minimal blocks. Trans. Ameг. Math. Soc. 134, 1968, 85-94. | MR | Zbl
[6] St. Říha: A new proof of the theorem by Fleischner. to appeaг.
[7] M. Sekanina: Problem No. 28, Theory of graphs and its Applications. Czechoslovak. Acad. of Sciences, Prague, 1964.
[8] Z. Skupien T. Traczyk: Personal communication.