@article{ARM_1989_25_1-2_a15,
author = {Rosick\'y, Ji\v{r}{\'\i} and Trnkov\'a, V\v{e}ra},
title = {Representability of concrete categories by non-constant morphisms},
journal = {Archivum mathematicum},
pages = {115--118},
year = {1989},
volume = {25},
number = {1-2},
mrnumber = {1189207},
zbl = {0708.18003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a15/}
}
Rosický, Jiří; Trnková, Věra. Representability of concrete categories by non-constant morphisms. Archivum mathematicum, Tome 25 (1989) no. 1-2, pp. 115-118. http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a15/
[1] J. Adámek J. Rosický, V. Trnková: Are all limit-closed subcategories of locally presentable categories reflective?. Proc. Categ. Conf. Louvain-La-Neuve, 1987, Lecture Notes in Math. 1348, Springer-Verlag 1388, 1-18. | MR
[2] T. Jech: Set theory. Academic Press, New York 1978. | MR | Zbl
[3] P. T. Johnstone: Stone spaces. Cambridge Univ. Press, Cambridge 1982. | MR | Zbl
[4] V. Koubek: Each concrete category has a representation by $T_2$-paracompact topological spaces. Comment. Math. Univ. Carolinae 15 (1975), 655-663. | MR
[5] L. Kučera, A. Pultr: Non-algebraic concrete categories. J. Pure Appl. Alg. 3 (1973), 95-102. | MR
[6] A. Pultr, V. Trnková: Combinatorial, algebraic and topological representations of groups, semigroups and categories. North Holland, Amsterdam 1980. | MR
[7] V. Trnková: Non-constant continuous mappings of metric or compact Hausdorff spaces. Comment. Math. Univ. Carolinae 13 (1972), 283-295. | MR
[8] V. Trnková: Vsje malyje kategorii predstavimy nepreryvnymi nepostojannymi otobraženijami bikompaktov. DAN SSSR 230 (1976), 789-791. | MR