Transitive ternary relations and quasiorderings
Archivum mathematicum, Tome 25 (1989) no. 1-2, pp. 5-12 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03E20, 06A06
@article{ARM_1989_25_1-2_a1,
     author = {Nov\'ak, V{\'\i}t\v{e}zslav and Novotn\'y, Miroslav},
     title = {Transitive ternary relations and quasiorderings},
     journal = {Archivum mathematicum},
     pages = {5--12},
     year = {1989},
     volume = {25},
     number = {1-2},
     mrnumber = {1189193},
     zbl = {0714.06001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a1/}
}
TY  - JOUR
AU  - Novák, Vítězslav
AU  - Novotný, Miroslav
TI  - Transitive ternary relations and quasiorderings
JO  - Archivum mathematicum
PY  - 1989
SP  - 5
EP  - 12
VL  - 25
IS  - 1-2
UR  - http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a1/
LA  - en
ID  - ARM_1989_25_1-2_a1
ER  - 
%0 Journal Article
%A Novák, Vítězslav
%A Novotný, Miroslav
%T Transitive ternary relations and quasiorderings
%J Archivum mathematicum
%D 1989
%P 5-12
%V 25
%N 1-2
%U http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a1/
%G en
%F ARM_1989_25_1-2_a1
Novák, Vítězslav; Novotný, Miroslav. Transitive ternary relations and quasiorderings. Archivum mathematicum, Tome 25 (1989) no. 1-2, pp. 5-12. http://geodesic.mathdoc.fr/item/ARM_1989_25_1-2_a1/

[1] P. Alles: Erweiterungen, Diagramme und Dimension zyklischer Ordnungen. Doctoral Thesis, Darmstadt 1986. | Zbl

[2] M. Altwegg: Zur Axiomatik der teilweise geordneten Mengen. Comment. Math. Helv. 24 (1950), 149-155. | MR | Zbl

[3] G. Вirkhoff: Lattice Theory. (2nd edition). New York, 1948.

[4] E. Čech: Bodové množiny. (Point Sets). Praha, 1974.

[5] N. Megiddo: Partial and complete cyclic order. Bull. Am. Math. Soc. 82 (1976), 274-276. | MR

[6] G. Müller: Lineare und zyklische Ordnung. Praxis Math. 16 (1974), 261-269. | MR

[7] V. Novák: Cyclically ordered sets. Czech. Math. J. 32 (1982), 460-473. | MR

[8] V. Novák M. Novotný: Dimension theory for cyclically and cocyclically ordered sets. Czech. Math. J. 33 (1983), 647-653. | MR

[9] V. Novák M. Novotný: Universal cyclically ordered sets. Czech. Math. J. 35 (1985), 158-161. | MR

[10] V. Novák M. Novotný: On completion of cyclically ordered sets. Czech. Math. J. 37 (1987), 407-414. | MR

[11] M. Sekanina: Graphs and betweeness. Matem. čas. 25 (1975), 41-47. | MR | Zbl