@article{ARM_1988_24_4_a2,
author = {Anderson, Ian M.},
title = {Aspects of the inverse problem to the calculus of variations},
journal = {Archivum mathematicum},
pages = {181--202},
year = {1988},
volume = {24},
number = {4},
mrnumber = {983236},
zbl = {0674.58017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1988_24_4_a2/}
}
Anderson, Ian M. Aspects of the inverse problem to the calculus of variations. Archivum mathematicum, Tome 24 (1988) no. 4, pp. 181-202. http://geodesic.mathdoc.fr/item/ARM_1988_24_4_a2/
[1] S. J. Aldersley, G. W. Horndeski: Conformally invariant tensorial concomitants of a pseudo-Riemannian metric. Utilitas Math. 17 (1980), 197-223. | MR | Zbl
[2] I. M. Anderson: On the structure of divergence-free tensors. J. Math. Phys. 19 (1978), 2570-2575. | MR | Zbl
[3] I. M. Anderson: Tensorial Euler-Lagrange expressions and conservation laws. Aequationes Math. 17 (1978), 255-291. | MR | Zbl
[4] I. M. Anderson: Natural variational principles on Riemannian manifolds. Annals of Math. 120 (1984), 329-370. | MR | Zbl
[5] I. M. Anderson: The variational bicomplex. (to appear). | Zbl
[6] I. M. Anderson: The minimal order solution to the inverse problem. (to appear).
[7] I. M. Anderson: Natural differential operators on the variational bicomplex. (to appear).
[8] I. M. Anderson, T. Duchamp: On the existence of global variational principles. Amer. J. Math. 102 (1980), 781-868. | MR | Zbl
[9] I. M. Anderson, T. Duchamp: Variational principles for second order quasi-linear scalar equations. J. Diff. Eqs. 51 (1984), 1-47. | MR | Zbl
[10] D. E. Betounes: Extensions of the classical Cartan form. Phys. Rev. D 29 (1984), 599-606. | MR
[11] K. S. Cheng, W. T. Ni: Conditions for the local existence of metric in a generic affine manifold. Math. Proc. Camb. Phil. Soc. 87 (1980), 527-534. | MR | Zbl
[12] S. S. Chern, J. Simons: Characteristic forms and geometric invariants. Annals of Math. 99 (1974), 48-69. | MR | Zbl
[13] M. Crampin: Alternative Lagrangians in particle dynamics. (to appear). | MR | Zbl
[14] V. V. Dodonov V. I. Man'ko, V. D. Skarzhinsky: The inverse problem of the variational calculus and the nonuniqueness of the quantization of classical systems. Hadronic J. 4 (1981), 1734-1803. | MR
[15] V. V. Dodonov V. I. Man'ko, V. D. Skarzhinsky: Classically equivalent Hamiltonians and ambiguities of quantization: a particle in a magnetic field. Il Nuovo Cimento 69B (1982), 185-205. | MR
[16] J. Douglas: Solution to the inverse problem of the calculus of variations. Trans. Amer. Math. Soc. 50 (1941), 71-128. | MR
[17] M. Ferraris: Fibered connections and Global Poincaré-Cartan forms in higher-order Calculus of Variations. in "Proc. of the Conference on Differential Geometry and its Applications, Nové Město na Moravě, Vol. II. Applications", Univerzita Karlova, Praga, 1984, pp. 61-91. | MR | Zbl
[18] V. N. Gusyatnikova A. M. Vinogradov V. A. Yumaguzhin: Secondary differential operators. J. Geom. Phys. 2 (1985), 23-65. | MR
[19] M. Henneaux: Equations of motions, commutation relations and ambiguities in the Lagrangian formalism. Ann. Phys. 140 (1982), 45-64. | MR
[20] M. Henneaux, L. C. Shepley: Lagrangians for spherically symmetric potentials. J. Math. Phys. 23 (1982), 2101-2104. | MR | Zbl
[21] M. Henneaux: On the inverse problem of the calculus of variations in field theory. J. Phys. A: Math. Gen. 17 (1984), 75-85. | MR | Zbl
[22] S. Hojman, H. Harleston: Equivalent Lagrangians: Multidimensional case. J. Math. Physics 22 (1981), 1414-1419. | MR | Zbl
[23] G. W. Horndeski: Differential operators associated with the Euler-Lagrange operator. Tensor 28 (1974), 303-318. | MR | Zbl
[24] J. Klein: Geometry of sprays. Lagrangian case. Principle of least curvature. in "Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Vol. 1", (Benenti, Francavigilia, Lichnerowicz, eds.), Atti dela Accademia delle Scienze di Torino, 1983, pp. 177-196. | MR | Zbl
[25] I. Kolář: A geometrical version of the higher order Hamilton formalism in fibered manifolds. J. Geom. Phys. 1 (1984), 127-137. | MR
[26] L. Littlejohn: On the classification of differential equations having orthogonal polynomial solutions. Annali di Mathematica pure ed applicata 138 (1984), 35-53. | MR | Zbl
[27] D. Lovelock: The Einstein tensor and its generalizations. J. Math. Physics 12 (1971), 498-501. | MR | Zbl
[28] J. M. Masqué: Poincaré-Cartan forms in higher order variational calculus on fibred manifolds. Revista Matematica Iberoamericana 1 (1985), 85-126. | MR
[29] P. J. Olver: Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1986. | MR | Zbl
[30] P. J. Olver: Darboux's theorem for Hamiltonian differential operators. (to appear).
[31] H. Rund: A Cartan form for the field theory of Carathéodory in the calculus of variations. in "Lecture Notes in Pure and Applied Mathematics No. 100: Differential Geometry, Calculus of Variations, and Their Applications", G. M. Rassias and T. M. Rassias (eds), Marcel Dekker, New York, 1985, pp. 455-470. | MR | Zbl
[32] W. Sarlet: Symmetries and alternative Lagrangians in higher-order mechanics. Phys. Lett. A 108 (1985), 14-18. | MR
[33] W. Sarlet F. Cantrijin, M. Crampin: A new look at second-order equations and Lagrangian mechanics. J. Phys. A: Math. Gen. 17 (1984), 1999-2009. | MR
[34] F. Takens: Symmetries, conservation laws and variational principles. in "Lecture Notes in Mathematics No. 597", Springer-Verlag, New York, 1977, pp. 581-603. | MR | Zbl
[35] F. Takens: A global version of the inverse problem to the calculus of variations. J. Diff. Geom. 14 (1979), 543-562. | MR
[36] G. Thompson: Second order equation fields and the inverse problem of Lagrangian dynamics. (to appear). | MR | Zbl
[37] E. Tonti: Inverse problem: Its general solution. in "Lecture Notes in Pure and Applied Mathematics No. 100: Differential Geometry, Calculus of Variations and Their Applications", Marcel Decker, New York, 1985, pp. 497-510. | MR | Zbl
[38] T. Tsujishita: On variation bicomplexes associated to differential equations. Osaka J. Math. 19 (1982), 311-363. | MR | Zbl
[39] W. M. Tulczyjew: The Euler-Lagrange resolution. in "Lecture Notes in Mathematics No. 836," Springer-Verlag, New York, 1980, pp. 22-48. | MR | Zbl
[40] A. M. Vinogradov: On the algebra-geometric foundation of Lagrangian field theory. Sov. Math. Dokl. 18 (1977), 1200-1204.
[41] A. M. Vinogradov: The C-spectral sequence, Lagrangian formalism and conservation laws I, II. J. Math. Anal. Appl. 100 (1984), 1-129. | MR
[42] E. Witten: Global aspects of current algebra. Nucl. Phys. B223 (1983), 422-432. | MR