@article{ARM_1988_24_3_a4,
author = {Ern\'e, Marcel},
title = {$\Cal W$-completeness and fixpoint properties},
journal = {Archivum mathematicum},
pages = {147--155},
year = {1988},
volume = {24},
number = {3},
mrnumber = {983232},
zbl = {0667.06003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1988_24_3_a4/}
}
Erné, Marcel. $\Cal W$-completeness and fixpoint properties. Archivum mathematicum, Tome 24 (1988) no. 3, pp. 147-155. http://geodesic.mathdoc.fr/item/ARM_1988_24_3_a4/
[1] S. Abian, A. B. Brown: A theorem on partiatly ordered sets, with applications to fixed point theorems. Canad. J. Math. 13 (1961) 78-82. | MR
[2] N. Bourbaki: Sur le théorème de Zorn. Arch. Math. (Basel) 2 (1949/50), 434-437. | MR
[3] A. C. Davis: A characterization of complete lattices. Pacific J. Math. 5 (1955), 311-319. | MR | Zbl
[4] M. Erné: Chains, directed sets and continuity. Prepгint N° 175, Institut für Mathematik, Universität Hannoveг (1984).
[5] W. Felscher: Naive Mengen und abstrakte Zahlen III. B. I. - Wissenschaftsverlag, Mannheim (1979). | MR | Zbl
[6] I. Guessarian: Some fixpoint techniques in algebraic structures and applications to computer science. Lab. Inf. Theor. et Progr. 87-7, University Paris 7 (1987). | MR | Zbl
[7] J. Klimeš: Fixed point characterization of completeness on lattices for relatively isotone mappings. Arch. Math. (Brno) 20 (1984), 125-132. | MR
[8] S. R. Kogalovskiî: On linearly complete ordered sets. [Russian], Uspehi Mat. Nauk. 19 (1964), No. 2 (116), 147-150. | MR
[9] M. Kolibiar: Fixed point theorems for ordered sets. Stud. Sci. Math. Hungar. 17 (1982), 45-50. | MR | Zbl
[10] G. Markowsky: Chain-complete posets and directed sets with applications. Algebra Univ. 6 (1976), 53-68. | MR | Zbl
[11] A. Tarski: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309. | MR | Zbl
[12] R. E. Smithson: Fixed points in partially ordered sets. Pacific J. Math. 45 (1973), 363-367. | MR | Zbl
[13] E. S. Wolk: Dedekind completeness and a fixed-point theorem. Canad. J. Math. 9 (1957), 400-405. | MR | Zbl
[14] E. Zermelo: Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Ann. 65 (1908), 107-128. | MR