On proper oscillatory solutions of the nonlinear differential equations of the $n$-th order
Archivum mathematicum, Tome 24 (1988) no. 2, pp. 89-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10, 34C15
@article{ARM_1988_24_2_a6,
     author = {Bartu\v{s}ek, Miroslav},
     title = {On proper oscillatory solutions of the nonlinear differential equations of the $n$-th order},
     journal = {Archivum mathematicum},
     pages = {89--98},
     year = {1988},
     volume = {24},
     number = {2},
     mrnumber = {983227},
     zbl = {0705.34036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1988_24_2_a6/}
}
TY  - JOUR
AU  - Bartušek, Miroslav
TI  - On proper oscillatory solutions of the nonlinear differential equations of the $n$-th order
JO  - Archivum mathematicum
PY  - 1988
SP  - 89
EP  - 98
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1988_24_2_a6/
LA  - en
ID  - ARM_1988_24_2_a6
ER  - 
%0 Journal Article
%A Bartušek, Miroslav
%T On proper oscillatory solutions of the nonlinear differential equations of the $n$-th order
%J Archivum mathematicum
%D 1988
%P 89-98
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1988_24_2_a6/
%G en
%F ARM_1988_24_2_a6
Bartušek, Miroslav. On proper oscillatory solutions of the nonlinear differential equations of the $n$-th order. Archivum mathematicum, Tome 24 (1988) no. 2, pp. 89-98. http://geodesic.mathdoc.fr/item/ARM_1988_24_2_a6/

[1] M. Bartušek: On Oscillatory Solutions of the System of Differential Equations with Deviating Arguments. Czech. Math. J., 35 (110), 1985, 529-532. | MR

[2] M. Bartušek: On Oscillatory Solution of the Differential Equation of the n-th Order. Arch. Math., XXII, No. 3 (1986), 145-156. | MR

[3] M. Bartušek: On Properties of Oscillatory Solutions of Non-linear Differential Eguations of the n-th Order. Diffeгential Equations and Theiг Application, Equadiff 6, Pгoc. бth Int. Conf. Brno, Czech. 1985, Lecture Notes Math., 1192, 107-113.

[4] M. Бapтyшeк: O cвoйcmвax кoлeблющuxcя peшeнuй oбыкнoвeнныx дuффepeнцuaльныx нepaвeнcmв u ypaвнeнuй. Дифф. ypaв., 23, No. 2 (1987), 187-191.

[5] Г. A. Чaнтypия: O6 ocцuллaцuoнныx cвoйcmвax cucmeм нeлuнeйныx oбыкнoвeнныx дuффepeнцuaльныx ypaвнeнuй. Tpyды Инcтитyтa пpиклaднoй мaтeмaтики (Tбилиcи) 14 (1983), 163-204.

[6] И. T. Kигypaдзe: Heкomopыe cuнгyляpныe кpaeвыe эaдaчu для oбыкнoвeнныx дuффepeнцuaльныx ypaвнeнuй. Изд. Tбилиccкoгo y-тa, Tбилиcи, 1975.

[7] I. T. Kiguradze: On the Oscillatory and Monotone Solutions of Ordinary Differential Equations. Arch. Math., XIV, No. 1 (1978), 21-44. | MR | Zbl

[8] I. T. Kiguгadze: On Asymptotic Behaviour of Solutions of Nonlinear Non-autonomous Ordinary Differential Equations. Colloquia Math. Soc. J. Bolyai, 30, Qualitative Theoгy of Differential Equations, Szeged, 1979, 507-554.

[9] I. T. Kiguгadze: On Vanishing at Infinity of Solutions of Ordinary Differential Equations. Czech. Math. J., 33 (108), 1983, 613-646. | MR

[10] И. T. Kигypaдзe: Oб oднoй кpaeвoй эaдaчe c ycлoвueм нa бecкoнeчнocmu для oбыкнoвeнныx дuффepeнцuaльныx ypaвнeнuй выcшux nopядкoв. Диффepeнциaльньie ypaвнeния в чacтныx пpoизвoдныx и иx пpилoжeния, Tpyды вcecoюзнoгo cимпoзиyмa, Изд. Tбилиccкoгo y-тa, Tбилиcи 1986.

[11] J. S. Wong: On the Generalized Emden-Fowler Equation. SIAM Review, 17, No. 2 (1975), 339-360. | MR | Zbl