Bounded, almost-periodic and periodic solutions of certain singularly perturbed systems with delay
Archivum mathematicum, Tome 24 (1988) no. 2, pp. 57-64
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{ARM_1988_24_2_a1,
author = {Lizana, Marcos},
title = {Bounded, almost-periodic and periodic solutions of certain singularly perturbed systems with delay},
journal = {Archivum mathematicum},
pages = {57--64},
year = {1988},
volume = {24},
number = {2},
mrnumber = {983223},
zbl = {0669.34077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1988_24_2_a1/}
}
Lizana, Marcos. Bounded, almost-periodic and periodic solutions of certain singularly perturbed systems with delay. Archivum mathematicum, Tome 24 (1988) no. 2, pp. 57-64. http://geodesic.mathdoc.fr/item/ARM_1988_24_2_a1/
[1] K. W. Chang: Almost periodic solutions of singularly perturbed systems of differential equations. J. Diff. Eq. V. 4, P. P. 300-307, (1968). | MR
[2] J. Hale: Ordinary differential equations. Wiley Intersc. N.Y. (1969). | MR | Zbl
[3] Yu. Mitropolski, O. B. Lykova: Integral manifolds in nonlinear mechanics. Nauka, Moscow (1973), in russian. | MR
[4] V. I. Rozhkov: A method of investigating periodic solutions for systems with a small parameter multiplying the derivatives. Diff. Eq. T. XI, No. 8, p. p. 1388-1395, (1975), in russian.