Lorentzian geometry as determined by the volumes of small truncated light cones
Archivum mathematicum, Tome 24 (1988) no. 1, pp. 5-15 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53B30
@article{ARM_1988_24_1_a1,
     author = {Schimming, Rainer},
     title = {Lorentzian geometry as determined by the volumes of small truncated light cones},
     journal = {Archivum mathematicum},
     pages = {5--15},
     year = {1988},
     volume = {24},
     number = {1},
     mrnumber = {983003},
     zbl = {0662.53020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1988_24_1_a1/}
}
TY  - JOUR
AU  - Schimming, Rainer
TI  - Lorentzian geometry as determined by the volumes of small truncated light cones
JO  - Archivum mathematicum
PY  - 1988
SP  - 5
EP  - 15
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1988_24_1_a1/
LA  - en
ID  - ARM_1988_24_1_a1
ER  - 
%0 Journal Article
%A Schimming, Rainer
%T Lorentzian geometry as determined by the volumes of small truncated light cones
%J Archivum mathematicum
%D 1988
%P 5-15
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1988_24_1_a1/
%G en
%F ARM_1988_24_1_a1
Schimming, Rainer. Lorentzian geometry as determined by the volumes of small truncated light cones. Archivum mathematicum, Tome 24 (1988) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/ARM_1988_24_1_a1/

[1] B.-Y. Chen, L. Vanhecke: Total curvatures of geodesic spheres. Archiv d. Math. 32 (1979), 404-411. | MR | Zbl

[2] B.-Y. Chen, L. Vanhecke: Differential geometry of geodesic spheres. J. f. d. reine u. angew. Math. 325 (1981), 28-67. | MR | Zbl

[3] R. Courant, D. Hilbert: Methods of Mathematical Physics. Vol. 2, Interscience, New York, 1977.

[4] F. Gackstatter, B. Gackstatter: Über Volumendefekte und Krümmung in Riemannschen Mannigfaltigkeiten mit Anwendungen in der Relativitätstheorie. Annalen d. Physik (7) 41 (1984), 35-44. | MR | Zbl

[5] A. Gray: The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J. 20 (1973), 329-344. | MR | Zbl

[6] A. Gray: Geodesic balls in Riemannian product manifolds. in: M. Cahen and M. Flato (eds.), Differential Geometry and Relativity, Reidel, Dordrecht, 1976. | MR | Zbl

[7] A. Gray, L. Vanhecke: Riemannian geometry as determined by the volumes of small geodesic balls. Acta math. 142 (1979), 157-198. | MR | Zbl

[8] P. Günther: Einige Sätze über das Volumenelement eines Riemannschen Raumes. Publ. Math. Debrecen 7 (1960), 78-93. | MR

[9] O. Kowalski: Additive volume invariants of Riemannian manifolds. Acta math. 145 (1980), 205-225. | MR | Zbl

[10] O. Kowalski: The volume conjecture and four-dimensional hypersurfaces. Comment. Math. Univers. Carol. 23 (1982), 81-87. | MR | Zbl

[11] O. Kowalski, L. Vanhecke: Ball-homogeneous and disk-homogeneous Riemannian manifolds. Math. Z. 180 (1982), 429-444. | MR | Zbl

[12] O. Kowalski, L. Vanhecke: On disk-homogeneous symmetric spaces. Ann. Glob. Analysis and Geom. 1 (1983), 91-104. | MR | Zbl

[13] O. Kowalski, L. Vanhecke: The volume of geodesic disks in a Riemannian manifold. Czech. Math. J. 35 (1985), 66-77. | MR | Zbl

[14] O. Kowalski, L. Vanhecke: Two-point functions on Riemannian manifolds. Ann. Glob. Analysis and Geom. 3 (1985), 95-119. | MR | Zbl

[15] A. Lichnerowicz, A. G. Walker: Sur les espaces riemanniens harmoniques de type hyperbolique normal. C. R. Acad. Sc. Paris 221 (1945), 394-396. | MR | Zbl

[16] V. Miquel: The volumes of small geodesic balls for a metric connection. Compositio Math. 46 (1982), 121-132. | MR | Zbl

[17] V. Miquel: Volumes of certain small geodesic balls and almost Hermitean geometry. Geometriae Dedicata 15 (1984), 261 -267. | MR

[18] H. S. Ruse A. G. Walker, and T. J. Willmore: Harmonic Spaces. Edizioni Cremonese, Roma, 1961. | MR

[19] R. Schimming: Riemannian manifolds for which a power of the radius is k-harmonic. Z. f. Analysis u. ihre Anw. 4 (1985), 235-249. | MR | Zbl