Riccati matrix differential equation and classification of disconjugate differential systems
Archivum mathematicum, Tome 23 (1987) no. 4, pp. 231-241 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10
@article{ARM_1987_23_4_a4,
     author = {Do\v{s}l\'y, Ond\v{r}ej},
     title = {Riccati matrix differential equation and classification of disconjugate differential systems},
     journal = {Archivum mathematicum},
     pages = {231--241},
     year = {1987},
     volume = {23},
     number = {4},
     mrnumber = {930783},
     zbl = {0637.34025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1987_23_4_a4/}
}
TY  - JOUR
AU  - Došlý, Ondřej
TI  - Riccati matrix differential equation and classification of disconjugate differential systems
JO  - Archivum mathematicum
PY  - 1987
SP  - 231
EP  - 241
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1987_23_4_a4/
LA  - en
ID  - ARM_1987_23_4_a4
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%T Riccati matrix differential equation and classification of disconjugate differential systems
%J Archivum mathematicum
%D 1987
%P 231-241
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1987_23_4_a4/
%G en
%F ARM_1987_23_4_a4
Došlý, Ondřej. Riccati matrix differential equation and classification of disconjugate differential systems. Archivum mathematicum, Tome 23 (1987) no. 4, pp. 231-241. http://geodesic.mathdoc.fr/item/ARM_1987_23_4_a4/

[1] E. Barvínek: Quadratic phases of differential equations y" + q(x) y = 0. Arch. Math. 8 (1972), 63-78. | MR

[2] J. H. Barrett: A Prüfer transformation of matrix differential equations. Proc. Amer. Math. Soc. 8 (1957), 510-518. | MR

[3] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung. VEB Deutscher Verlag der Wissenschaften, Berlin 1967. | MR

[4] W. A. Coppel: Disconjugacy. Lectures Notes in Mathematics 220, Springer Verlag, Berlin-New York-Heidelberg 1971. | MR | Zbl

[5] O. Došlý: On transformation of self-adjoint linear differential systems and their reciprocals. to appear. | MR

[6] P. Hartman: Self-adjoint, nonoscillatory systems of ordinary, second order, linear equations. Duke J. Math. 24 (1957), 25-35. | MR

[7] W. T. Reid: A Prüfer transformation for matrix differential systems. Pacific J. Math. 8 (1958), 575-584. | MR

[8] W. T. Reid: Sturmian Theory for Ordinary Differential Equations. John Wiley, New York 1980 | MR | Zbl

[9] R. L. Sternberg: Variational methods and non-oscillatory theorems for systems of differential equations. Duke J. Math. 19 (1952), 311-322. | MR