Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem
Archivum mathematicum, Tome 23 (1987) no. 3, pp. 155-170
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 37J99, 70H05
@article{ARM_1987_23_3_a2,
     author = {Krupkov\'a, Olga},
     title = {Lepagean 2-forms in higher order {Hamiltonian} mechanics. {II.} {Inverse} problem},
     journal = {Archivum mathematicum},
     pages = {155--170},
     year = {1987},
     volume = {23},
     number = {3},
     mrnumber = {930318},
     zbl = {0651.58010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1987_23_3_a2/}
}
TY  - JOUR
AU  - Krupková, Olga
TI  - Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem
JO  - Archivum mathematicum
PY  - 1987
SP  - 155
EP  - 170
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1987_23_3_a2/
LA  - en
ID  - ARM_1987_23_3_a2
ER  - 
%0 Journal Article
%A Krupková, Olga
%T Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem
%J Archivum mathematicum
%D 1987
%P 155-170
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1987_23_3_a2/
%G en
%F ARM_1987_23_3_a2
Krupková, Olga. Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem. Archivum mathematicum, Tome 23 (1987) no. 3, pp. 155-170. http://geodesic.mathdoc.fr/item/ARM_1987_23_3_a2/

[13] E. Engels W. Sarlet: General solution and invariants for a class of lagrangian equations governed by a velocity-dependent potential energy. J. Phys. A: Math., Nucl. Gen. 6 (1973), 818-825. | MR

[14] P. Havas: The range of application of the Lagrange formalism I. Nuovo Cimento (Suppl.) 3 (1957), 363-388. | MR | Zbl

[15] D. Kгupka A. E. Sattaгov: The inverse problem of the calculus of variations for Finsler structures. Math. Slovaca (35) 3 (1985), 217-222. | MR

[16] O. Kгupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity. Arch. Math. (Bгno) 2 (1986), 97-120. | MR

[17] J. Novotný: On the inverse variational problem in the classical mechanics. Pгoc. Conf. Diff. Geom. Appl. 1980, Charles University of Prague (1981), 189-195. | MR

[18] R. M. Santilli: Foundations of Theoretical Physics I., The Inverse Problem in Newtonian Mechanics. Springeг Verlag, New Yoгk 1978. | MR

[19] W. Saгlet: On the transition between second-order and first-order systems within the context of the inverse problem of Newtonian mechanics. Hadronic J. 2 (1979), 407-432. | MR

[20] W. Sarlet: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics. J. Phys. A: Math. Gen. 15 (1982), 1503-1517. | MR | Zbl

[21] O. Štěpánková: The local inverse problem of the calculus of variations in higher order Hamiltonian mechanics. Geometгical Methods in Physics, Pгoc. Conf. Diff. Geom. Appl., Sept. 1983, J. E. Puгkyně University, Bгno (1984), 275-287. | MR

[22] E. T. Whittaker: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the problem of Three Bodies. 2-nd Ed. Cambгidge, the Univeгsity Pгess, 1917. | MR