Asymptotic formulas for solutions of the differential equation with advanced argument $(x'(t)/r(t))'+q(t)f(x(g(t)))=0$
Archivum mathematicum, Tome 23 (1987) no. 1, pp. 45-51
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{ARM_1987_23_1_a6,
author = {R\'ab, Milo\v{s}},
title = {Asymptotic formulas for solutions of the differential equation with advanced argument $(x'(t)/r(t))'+q(t)f(x(g(t)))=0$},
journal = {Archivum mathematicum},
pages = {45--51},
year = {1987},
volume = {23},
number = {1},
mrnumber = {930547},
zbl = {0652.34080},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1987_23_1_a6/}
}
TY - JOUR AU - Ráb, Miloš TI - Asymptotic formulas for solutions of the differential equation with advanced argument $(x'(t)/r(t))'+q(t)f(x(g(t)))=0$ JO - Archivum mathematicum PY - 1987 SP - 45 EP - 51 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/ARM_1987_23_1_a6/ LA - en ID - ARM_1987_23_1_a6 ER -
Ráb, Miloš. Asymptotic formulas for solutions of the differential equation with advanced argument $(x'(t)/r(t))'+q(t)f(x(g(t)))=0$. Archivum mathematicum, Tome 23 (1987) no. 1, pp. 45-51. http://geodesic.mathdoc.fr/item/ARM_1987_23_1_a6/
[1] M. Švec A. Haščák: Integral equivalence of two systems of differential equations. Czech. Math. J. 32 (107) (1982), 423-436. | MR
[2] A. Haščák: Integral equivalence between a nonlinear system and its nonlinear perturbation. Math. Slovaca 34 (1984), 393-404. | MR
[3] M. Švec: Some problems concerning the equivalences of two systems of differential equations. Proceedings of the Conference EQUADIFF VI held in Brno 1985. | MR
[4] M. Naito: Asymptotic behavior of solutions of second order differential equations with integrable coefficients. Trans. Amer. Math. Soc. 282 (1984), 577-588. | MR | Zbl