Ultraproducts and the axiom of choice
Archivum mathematicum, Tome 22 (1986) no. 4, pp. 175-180 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03C20, 03E25, 54A25, 54A35
@article{ARM_1986_22_4_a0,
     author = {Brunner, Norbert},
     title = {Ultraproducts and the axiom of choice},
     journal = {Archivum mathematicum},
     pages = {175--180},
     year = {1986},
     volume = {22},
     number = {4},
     mrnumber = {868531},
     zbl = {0642.03029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1986_22_4_a0/}
}
TY  - JOUR
AU  - Brunner, Norbert
TI  - Ultraproducts and the axiom of choice
JO  - Archivum mathematicum
PY  - 1986
SP  - 175
EP  - 180
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1986_22_4_a0/
LA  - en
ID  - ARM_1986_22_4_a0
ER  - 
%0 Journal Article
%A Brunner, Norbert
%T Ultraproducts and the axiom of choice
%J Archivum mathematicum
%D 1986
%P 175-180
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1986_22_4_a0/
%G en
%F ARM_1986_22_4_a0
Brunner, Norbert. Ultraproducts and the axiom of choice. Archivum mathematicum, Tome 22 (1986) no. 4, pp. 175-180. http://geodesic.mathdoc.fr/item/ARM_1986_22_4_a0/

[1] A. Blass: A model without ultrafilters. Bull. Acad. Polon. 25 (1977), 329-331. | MR | Zbl

[2] N. Brunner: Lindelöf-Räume und Auswahlaxiom. Anzeiger Akad. Wiss. Wien 119 (1982), 161-165. | MR

[3] N. Brunner: Hilberträume mit amorphen Basen. Compositio Math. 52 (1984) 381-387. | MR | Zbl

[4] J. D. Halpern: On a question of Tarski and a theorem of Kurepa. Pacific J. Math. 41 (1972), 111-121. | MR

[5] J. L. Hickman: Groups in models of set theory. Bull. Australian Math. Soc. 14 (1976), 199-232. | MR | Zbl

[6] P. E. Howard: Loš theorem and the BPI imply AC. Proc. A.M.S. 49 (1975), 426-428. | MR

[7] T. Jech: The Axiom of Choice. New York 1973. | MR | Zbl

[8] A. Levy: Axioms of Multiple Choice. Fundamenta Math. 59 (1962), 475-483. | MR | Zbl

[9] G. P. Monro: Generic Extensions without AC. J. Symbolic Logic 48 (1983), 39-52. | MR

[10] D. Pincus: Strength of the Hahn Banach Theorem. in Victoria Symp. Nonstandard Analysis, Springer LN 369 (1972). | MR

[11] H. Rubin J. E. Rubin: Equivalents of AC II. North Holland P.C. (1985).