@article{ARM_1986_22_2_a4,
author = {Krupkov\'a, Olga},
title = {Lepagean 2-forms in higher order {Hamiltonian} mechanics. {I.} {Regularity}},
journal = {Archivum mathematicum},
pages = {97--120},
year = {1986},
volume = {22},
number = {2},
mrnumber = {868124},
zbl = {0637.58002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1986_22_2_a4/}
}
Krupková, Olga. Lepagean 2-forms in higher order Hamiltonian mechanics. I. Regularity. Archivum mathematicum, Tome 22 (1986) no. 2, pp. 97-120. http://geodesic.mathdoc.fr/item/ARM_1986_22_2_a4/
[1] I. M. Anderson T. Duchamp: On the existence of global variational principles. Amer. J. Math. 102 (1980), 781-868. | MR
[2] P. Dedecker: Le théorème de Helmholtz-Cartan pour une intégrale simple d'ordre superieur. C. R. Acad. Sci. Paris, Sér. A, 288 (1979), 827-830. | MR | Zbl
[3] Th. de Donder: Théorie invariantive du calcul des variations. Gauthier-Villars, Paris, 1930.
[4] H. Goldschmidt S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier (Grenoble), 23 (1973), 203-267. | MR
[5] L. Klapka: Euler-Lagrange expressions and closed two-forms in higher order mechanics. Geometrical Methods in Physics, Proc. Conf. Diff. Geom. Appl., Sept. 1983; J. E. Purkyně University, Brno, 1984, 149-153. | MR
[6] D. Krupka: Some geometric aspects of variational problems in fibered manifolds. Folia Fac. Sci. Nat. UJEP Brunensis XIV (1973), 1-65.
[7] D. Krupka: On the local structure of the Euler-Lagrange mapping of the calculus of variations. Proc. Conf. Diff. Geom. Appl., Sept. 1980; Charles University, Prague, 1981, 181-187. | MR
[8] D. Krupka: Lepagean forms in higher order variational theory. Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, June 1982; Acad. Sci. Turin 117 (1983), 197-238. | MR
[9] D. Krupka: On the higher order Hamilton theory in fibered spaces. Geometrical Methods in Physics, Proc. Conf. Diff. Geom. Appl., Sept. 1983; J. E. Purkyně University, Brno, 1984, 167-183. | MR
[10] D. Krupka J. Musilová: Hamilton extremals in higher order mechanics. Arch. Math. (Brno) 20 (1984), 21-30. | MR
[11] D. Krupka O. Štěpánková: On the Hamilton form in second order calculus of variations. Proc. Internat. Meeting "Geometry and Physics", Florence, Oct. 1982; Pitagora Editrice Bologna (1983), 85-101. | MR
[12] A. L. Vanderbauwhede: Potential operators and the inverse problem of classical mechanics. Hadronic Journal 1 (1978), 1177-1197. | MR | Zbl