@article{ARM_1986_22_1_a4,
author = {Stan\v{e}k, Svatoslav and Vosmansk\'y, Jarom{\'\i}r},
title = {Transformations of linear second order ordinary differential equations},
journal = {Archivum mathematicum},
pages = {55--59},
year = {1986},
volume = {22},
number = {1},
mrnumber = {868119},
zbl = {0644.34029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a4/}
}
Staněk, Svatoslav; Vosmanský, Jaromír. Transformations of linear second order ordinary differential equations. Archivum mathematicum, Tome 22 (1986) no. 1, pp. 55-59. http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a4/
[1] I. Bihary: Zeros of the Böcher - function and its derivative with respect to differential equation $y" + p(x) y = 0$ II. (to appear).
[2] O. Borůvka: Linear Differential Transformations of the Second Order. The English Univ. Press, (1971) London. | MR
[3] Z. Došlá: Monotonicity properties of the linear combination of derivatives of some special functions. (to appear). Arch. Math. (Brno), 21, (1985), 147 - 157. | MR
[4] A. Erdélyi, al: Higher transcendental functions. vol. 2, Mc Graw-Hill, New York, 1954.
[5] M. Háčik: Generalization of amplitude, phase and accompanying differential equations. Acta Univ. Palackianae Olomucensis, FRN, 33, (1971), 7-17. | MR
[6] J. Heading: Consistency invariants and transformations between second order linear differential equations. Preprint.
[7] M. Laitoch: L'équation associée dans la théorie des transformations des équations différentielles du second ordre. Acta Univ. Palackianae Olomucensis, 12, 0963), 45 - 62. | MR | Zbl
[8] M. Muldoon: On the zeros of a function related to Bessel functions. Arch. Math. (Brno), 18, (1982), 22-34. | MR | Zbl
[9] S. Staněk: On a certain transformation of the solution of two second order differential equations. Acta Univ. Palackianae Olomucensis, FRN, 76, math. XXII, (1983), 81-90. | MR
[10] J. Vosmanský: The monotonicity of extremants of integrals of the differential equation y'' + q(t)y = 0. Arch. Math. (Brno), 2, (1966), 105-111. | MR | Zbl
[11] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of y'' + a(t) y' + b(t) y = 0. Arch. Math. (Brno), X, (1974), 87-102. | MR