Hopf bifurcation in symmetric systems
Archivum mathematicum, Tome 22 (1986) no. 1, pp. 29-53 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C25, 37G99
@article{ARM_1986_22_1_a3,
     author = {Vanderbauwhede, A.},
     title = {Hopf bifurcation in symmetric systems},
     journal = {Archivum mathematicum},
     pages = {29--53},
     year = {1986},
     volume = {22},
     number = {1},
     mrnumber = {868118},
     zbl = {0628.58035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a3/}
}
TY  - JOUR
AU  - Vanderbauwhede, A.
TI  - Hopf bifurcation in symmetric systems
JO  - Archivum mathematicum
PY  - 1986
SP  - 29
EP  - 53
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a3/
LA  - en
ID  - ARM_1986_22_1_a3
ER  - 
%0 Journal Article
%A Vanderbauwhede, A.
%T Hopf bifurcation in symmetric systems
%J Archivum mathematicum
%D 1986
%P 29-53
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a3/
%G en
%F ARM_1986_22_1_a3
Vanderbauwhede, A. Hopf bifurcation in symmetric systems. Archivum mathematicum, Tome 22 (1986) no. 1, pp. 29-53. http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a3/

[1] Th. Bröckner, L. Lander: Differentiable germs and catastrophes. LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975.

[2] M. Golubitsky, I. Stewart: Hopf bifurcation in the presence of symmetry. Arch. Rat. Mech. Anal. 87 (1985), 107-165. | MR | Zbl

[3] G. Iooss: Bifurcation and transition to turbulence in hydrodynamics. Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. | Zbl

[4] G. Schwarz: Smooth functions invariant under the action of a compact Lie group. Topology, 14 (1975), 63-68. | MR | Zbl

[5] E. Takigawa: Bifurcation of waves of reaction-diffusion equations on axisymmetric domains. PhD Thesis, Brown University, 1981.

[6] A. Vanderbauwhede: Local bifurcation and symmetry. Research Notes in Math., vol. 75, Pitman, London, 1982. | Zbl

[7] A. Vanderbauwhede: Bifurcation of periodic solutions in a rotationally symmetric oscillation system. J. Reine Augew. Math. 360 (1985), 1-18. | MR | Zbl

[8] S. A. Van Gils: Some studies in dynamical system theory. PhD Thesis, Delft, 1984.

[9] H. Whitney: Differentiable even functions. Duke Math. J. 10 (1943), 159-160. | MR | Zbl