@article{ARM_1986_22_1_a3,
author = {Vanderbauwhede, A.},
title = {Hopf bifurcation in symmetric systems},
journal = {Archivum mathematicum},
pages = {29--53},
year = {1986},
volume = {22},
number = {1},
mrnumber = {868118},
zbl = {0628.58035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a3/}
}
Vanderbauwhede, A. Hopf bifurcation in symmetric systems. Archivum mathematicum, Tome 22 (1986) no. 1, pp. 29-53. http://geodesic.mathdoc.fr/item/ARM_1986_22_1_a3/
[1] Th. Bröckner, L. Lander: Differentiable germs and catastrophes. LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975.
[2] M. Golubitsky, I. Stewart: Hopf bifurcation in the presence of symmetry. Arch. Rat. Mech. Anal. 87 (1985), 107-165. | MR | Zbl
[3] G. Iooss: Bifurcation and transition to turbulence in hydrodynamics. Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. | Zbl
[4] G. Schwarz: Smooth functions invariant under the action of a compact Lie group. Topology, 14 (1975), 63-68. | MR | Zbl
[5] E. Takigawa: Bifurcation of waves of reaction-diffusion equations on axisymmetric domains. PhD Thesis, Brown University, 1981.
[6] A. Vanderbauwhede: Local bifurcation and symmetry. Research Notes in Math., vol. 75, Pitman, London, 1982. | Zbl
[7] A. Vanderbauwhede: Bifurcation of periodic solutions in a rotationally symmetric oscillation system. J. Reine Augew. Math. 360 (1985), 1-18. | MR | Zbl
[8] S. A. Van Gils: Some studies in dynamical system theory. PhD Thesis, Delft, 1984.
[9] H. Whitney: Differentiable even functions. Duke Math. J. 10 (1943), 159-160. | MR | Zbl