Some results on the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$
Archivum mathematicum, Tome 21 (1985) no. 4, pp. 195-199
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34D20, 34E05
@article{ARM_1985_21_4_a2,
     author = {Kalas, Josef},
     title = {Some results on the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$},
     journal = {Archivum mathematicum},
     pages = {195--199},
     year = {1985},
     volume = {21},
     number = {4},
     mrnumber = {833131},
     zbl = {0585.34037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a2/}
}
TY  - JOUR
AU  - Kalas, Josef
TI  - Some results on the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$
JO  - Archivum mathematicum
PY  - 1985
SP  - 195
EP  - 199
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a2/
LA  - en
ID  - ARM_1985_21_4_a2
ER  - 
%0 Journal Article
%A Kalas, Josef
%T Some results on the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$
%J Archivum mathematicum
%D 1985
%P 195-199
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a2/
%G en
%F ARM_1985_21_4_a2
Kalas, Josef. Some results on the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$. Archivum mathematicum, Tome 21 (1985) no. 4, pp. 195-199. http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a2/

[1] Z. Tеsаřová: The Riccati differential equation with complex-valued coefficients and application to the equation x" + P(t)x' + Q(t)x = 0. Arcһ. Mаth. (Brno) 18 (1982), 133-143. | MR

[2] J. Kаlаs: On a "Liapunov-like" function for an equation $\dot{z} =f(t, z)$ with a complex-valued function f. Arch. Mаth. (Brno) 18 (1982), 65-76. | MR

[3] J. Kаlаs: Asymptotic nature of solutions of the equation ż =f(t, z) with a complex-valued function f. Arch. Mаth. (Brno) 20 (1984), 83-94. | MR

[4] C. Kulig: On a system of differential equations. Zеszyty Nаukowе Univ. Jаgiеllońskiеgo, Рrаcе Mаt., Zеszyt 9, 77 (1963), 37-48. | MR | Zbl

[5] M. Ráb: Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients. J. Diff. Equаtions 25 (1977), 108-114. | MR