@article{ARM_1985_21_4_a1,
author = {Guggenheimer, H.},
title = {A {Leighton-Bor\r{u}vka} formula for {Morse} conjugate points},
journal = {Archivum mathematicum},
pages = {189--193},
year = {1985},
volume = {21},
number = {4},
mrnumber = {833130},
zbl = {0585.34024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a1/}
}
Guggenheimer, H. A Leighton-Borůvka formula for Morse conjugate points. Archivum mathematicum, Tome 21 (1985) no. 4, pp. 189-193. http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a1/
[1] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung. VEB Deutsch. Verlag Wiss. Berlin 1967. | MR
[2] R. Freedman: Oscillation theory of systems of ordinary differential equations. Thesis, PINY 1979.
[3] H. Guggenheimer: On focal points and limit behavior of solutions of differential equations. Arch. Math. (Brno) 14 (1978) 139-144. | MR
14] H. Guggenheimer: Geometric theory of differential equations, III. Second Order Equations of the Reals. Arch. rat. Mech. Anal. 41 (1971) 219-240. | MR
[5] H. Guggenheimer: Applicable Geometry. Krieger, Huntington NY 1977. | MR | Zbl
[6] W. Leighton: Principal quadratic functionals. TAMS 67 (1949) 253-274. | MR | Zbl
[7] A. C. Peterson: On the monotone nature of boundary value functions for n-th order differential equations. Canad. Math. Bull. 15 (1972) 253-258. | MR | Zbl
[8] W. T. Reid: Ordinary Differential Equations. Wiley NY 1971. | MR | Zbl