A Leighton-Borůvka formula for Morse conjugate points
Archivum mathematicum, Tome 21 (1985) no. 4, pp. 189-193 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C05, 34H05
@article{ARM_1985_21_4_a1,
     author = {Guggenheimer, H.},
     title = {A {Leighton-Bor\r{u}vka} formula for {Morse} conjugate points},
     journal = {Archivum mathematicum},
     pages = {189--193},
     year = {1985},
     volume = {21},
     number = {4},
     mrnumber = {833130},
     zbl = {0585.34024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a1/}
}
TY  - JOUR
AU  - Guggenheimer, H.
TI  - A Leighton-Borůvka formula for Morse conjugate points
JO  - Archivum mathematicum
PY  - 1985
SP  - 189
EP  - 193
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a1/
LA  - en
ID  - ARM_1985_21_4_a1
ER  - 
%0 Journal Article
%A Guggenheimer, H.
%T A Leighton-Borůvka formula for Morse conjugate points
%J Archivum mathematicum
%D 1985
%P 189-193
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a1/
%G en
%F ARM_1985_21_4_a1
Guggenheimer, H. A Leighton-Borůvka formula for Morse conjugate points. Archivum mathematicum, Tome 21 (1985) no. 4, pp. 189-193. http://geodesic.mathdoc.fr/item/ARM_1985_21_4_a1/

[1] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung. VEB Deutsch. Verlag Wiss. Berlin 1967. | MR

[2] R. Freedman: Oscillation theory of systems of ordinary differential equations. Thesis, PINY 1979.

[3] H. Guggenheimer: On focal points and limit behavior of solutions of differential equations. Arch. Math. (Brno) 14 (1978) 139-144. | MR

14] H. Guggenheimer: Geometric theory of differential equations, III. Second Order Equations of the Reals. Arch. rat. Mech. Anal. 41 (1971) 219-240. | MR

[5] H. Guggenheimer: Applicable Geometry. Krieger, Huntington NY 1977. | MR | Zbl

[6] W. Leighton: Principal quadratic functionals. TAMS 67 (1949) 253-274. | MR | Zbl

[7] A. C. Peterson: On the monotone nature of boundary value functions for n-th order differential equations. Canad. Math. Bull. 15 (1972) 253-258. | MR | Zbl

[8] W. T. Reid: Ordinary Differential Equations. Wiley NY 1971. | MR | Zbl