Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems
Archivum mathematicum, Tome 21 (1985) no. 3, pp. 171-175
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{ARM_1985_21_3_a4,
author = {Agarwal, Ravi P. and Vosmansk\'y, Jarom{\'\i}r},
title = {Necessary and sufficient conditions for the convergence of approximate {Picard's} iterates for nonlinear boundary value problems},
journal = {Archivum mathematicum},
pages = {171--175},
year = {1985},
volume = {21},
number = {3},
mrnumber = {833127},
zbl = {0599.65056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/}
}
TY - JOUR AU - Agarwal, Ravi P. AU - Vosmanský, Jaromír TI - Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems JO - Archivum mathematicum PY - 1985 SP - 171 EP - 175 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/ LA - en ID - ARM_1985_21_3_a4 ER -
%0 Journal Article %A Agarwal, Ravi P. %A Vosmanský, Jaromír %T Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems %J Archivum mathematicum %D 1985 %P 171-175 %V 21 %N 3 %U http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/ %G en %F ARM_1985_21_3_a4
Agarwal, Ravi P.; Vosmanský, Jaromír. Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems. Archivum mathematicum, Tome 21 (1985) no. 3, pp. 171-175. http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/
[1] R. P. Agarwal: On Urabe's application of Newton's method to nonlinear boundary value problems. Arch. Math. (Brno) T 20 (1984), 113-123. | MR | Zbl
[2] R. P. Agarwal: Contraction and approximate contraction with an application to multi-point boundary value problems. J. Comp. Appl. Math. 9 (1983) 315-325. | MR | Zbl
[3] R. P. Agarwal, J. Vosmanský: Two-point boundary value problems for second order systems. Arch. Math. (Brno) T 19 (1983), 1-8. | MR
[4] J. M. Ortega, W. C. Rheinboldt: On a class of approximate iterative processes. Arch. Rational Meth. Anal. 23 (1967), 352-365. | MR | Zbl