Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems
Archivum mathematicum, Tome 21 (1985) no. 3, pp. 171-175 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 65L10
@article{ARM_1985_21_3_a4,
     author = {Agarwal, Ravi P. and Vosmansk\'y, Jarom{\'\i}r},
     title = {Necessary and sufficient conditions for the convergence of approximate {Picard's} iterates for nonlinear boundary value problems},
     journal = {Archivum mathematicum},
     pages = {171--175},
     year = {1985},
     volume = {21},
     number = {3},
     mrnumber = {833127},
     zbl = {0599.65056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/}
}
TY  - JOUR
AU  - Agarwal, Ravi P.
AU  - Vosmanský, Jaromír
TI  - Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems
JO  - Archivum mathematicum
PY  - 1985
SP  - 171
EP  - 175
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/
LA  - en
ID  - ARM_1985_21_3_a4
ER  - 
%0 Journal Article
%A Agarwal, Ravi P.
%A Vosmanský, Jaromír
%T Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems
%J Archivum mathematicum
%D 1985
%P 171-175
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/
%G en
%F ARM_1985_21_3_a4
Agarwal, Ravi P.; Vosmanský, Jaromír. Necessary and sufficient conditions for the convergence of approximate Picard's iterates for nonlinear boundary value problems. Archivum mathematicum, Tome 21 (1985) no. 3, pp. 171-175. http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a4/

[1] R. P. Agarwal: On Urabe's application of Newton's method to nonlinear boundary value problems. Arch. Math. (Brno) T 20 (1984), 113-123. | MR | Zbl

[2] R. P. Agarwal: Contraction and approximate contraction with an application to multi-point boundary value problems. J. Comp. Appl. Math. 9 (1983) 315-325. | MR | Zbl

[3] R. P. Agarwal, J. Vosmanský: Two-point boundary value problems for second order systems. Arch. Math. (Brno) T 19 (1983), 1-8. | MR

[4] J. M. Ortega, W. C. Rheinboldt: On a class of approximate iterative processes. Arch. Rational Meth. Anal. 23 (1967), 352-365. | MR | Zbl