Monotonicity properties of the linear combination of derivatives of some special functions
Archivum mathematicum, Tome 21 (1985) no. 3, pp. 147-157 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 33C10, 34C10
@article{ARM_1985_21_3_a2,
     author = {Do\v{s}l\'a-Tesa\v{r}ov\'a, Zuzana},
     title = {Monotonicity properties of the linear combination of derivatives of some special functions},
     journal = {Archivum mathematicum},
     pages = {147--157},
     year = {1985},
     volume = {21},
     number = {3},
     mrnumber = {833125},
     zbl = {0596.33009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a2/}
}
TY  - JOUR
AU  - Došlá-Tesařová, Zuzana
TI  - Monotonicity properties of the linear combination of derivatives of some special functions
JO  - Archivum mathematicum
PY  - 1985
SP  - 147
EP  - 157
VL  - 21
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a2/
LA  - en
ID  - ARM_1985_21_3_a2
ER  - 
%0 Journal Article
%A Došlá-Tesařová, Zuzana
%T Monotonicity properties of the linear combination of derivatives of some special functions
%J Archivum mathematicum
%D 1985
%P 147-157
%V 21
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a2/
%G en
%F ARM_1985_21_3_a2
Došlá-Tesařová, Zuzana. Monotonicity properties of the linear combination of derivatives of some special functions. Archivum mathematicum, Tome 21 (1985) no. 3, pp. 147-157. http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a2/

[1] M. Háčik: Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y" + q(t) y = 0$ with regard to the basis $[\alpha,\beta]$. Arch. Math. (Brno) 8, (1972), 79-83. | MR

[2] E. Pavlíková: Higher monotonicity properties of i-th derivatives of solutions of $y" + ay' + by = 0$. Acta Univ. Palac. Olom., Math. 73 (1982), 69-77. | MR

[3] S. Staněk J. Vosmanský: Transformations between second order linear differential equations. (to appear).

[4] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y" + a(t)y' + b(t)y = 0$. Arch. Math. (Brno) 2 (1974), 87-102. | MR

[5] J. Vosmanský: Certain higher monotonicity properties of Bessel functions. Arch. Math. (Brno) 1 (1977), 55-64. | MR

[6] J. Vosmanský: Some higher monotonicity properties of i-th derivatives of solutions $y" + a(t)y' + b(t)y = 0$. Ist. mat. U. D., Univ. Firenze, preprint, No. 1972/17.

[7] D. V. Widder: The Laplace transform. (Princeton University Press, Princeton, 1941). | MR | Zbl