@article{ARM_1985_21_3_a2,
author = {Do\v{s}l\'a-Tesa\v{r}ov\'a, Zuzana},
title = {Monotonicity properties of the linear combination of derivatives of some special functions},
journal = {Archivum mathematicum},
pages = {147--157},
year = {1985},
volume = {21},
number = {3},
mrnumber = {833125},
zbl = {0596.33009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a2/}
}
Došlá-Tesařová, Zuzana. Monotonicity properties of the linear combination of derivatives of some special functions. Archivum mathematicum, Tome 21 (1985) no. 3, pp. 147-157. http://geodesic.mathdoc.fr/item/ARM_1985_21_3_a2/
[1] M. Háčik: Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y" + q(t) y = 0$ with regard to the basis $[\alpha,\beta]$. Arch. Math. (Brno) 8, (1972), 79-83. | MR
[2] E. Pavlíková: Higher monotonicity properties of i-th derivatives of solutions of $y" + ay' + by = 0$. Acta Univ. Palac. Olom., Math. 73 (1982), 69-77. | MR
[3] S. Staněk J. Vosmanský: Transformations between second order linear differential equations. (to appear).
[4] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of $y" + a(t)y' + b(t)y = 0$. Arch. Math. (Brno) 2 (1974), 87-102. | MR
[5] J. Vosmanský: Certain higher monotonicity properties of Bessel functions. Arch. Math. (Brno) 1 (1977), 55-64. | MR
[6] J. Vosmanský: Some higher monotonicity properties of i-th derivatives of solutions $y" + a(t)y' + b(t)y = 0$. Ist. mat. U. D., Univ. Firenze, preprint, No. 1972/17.
[7] D. V. Widder: The Laplace transform. (Princeton University Press, Princeton, 1941). | MR | Zbl