On the terminal value problem for differential equations with deviating arguments
Archivum mathematicum, Tome 21 (1985) no. 1, pp. 43-49 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A12, 34K05
Keywords: differential equations with deviating arguments; terminal value problem; existence and uniqueness of solutions; asymptotic behavior of solutions
@article{ARM_1985_21_1_a5,
     author = {Staikos, V. A. and Tsamatos, P. Ch.},
     title = {On the terminal value problem for differential equations with deviating arguments},
     journal = {Archivum mathematicum},
     pages = {43--49},
     year = {1985},
     volume = {21},
     number = {1},
     mrnumber = {818306},
     zbl = {0586.34056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a5/}
}
TY  - JOUR
AU  - Staikos, V. A.
AU  - Tsamatos, P. Ch.
TI  - On the terminal value problem for differential equations with deviating arguments
JO  - Archivum mathematicum
PY  - 1985
SP  - 43
EP  - 49
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a5/
LA  - en
ID  - ARM_1985_21_1_a5
ER  - 
%0 Journal Article
%A Staikos, V. A.
%A Tsamatos, P. Ch.
%T On the terminal value problem for differential equations with deviating arguments
%J Archivum mathematicum
%D 1985
%P 43-49
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a5/
%G en
%F ARM_1985_21_1_a5
Staikos, V. A.; Tsamatos, P. Ch. On the terminal value problem for differential equations with deviating arguments. Archivum mathematicum, Tome 21 (1985) no. 1, pp. 43-49. http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a5/

[1] C Avramescu: Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires. Ann. Mat. Pura Appl., 81 (1969), 147-167. | MR | Zbl

[2] T. G. Hallam: A comparison principle for terminal value problems in ordinary differential equations. Trans. Amer. Math. Soc., 169 (1972), 49-57. | MR | Zbl

[3] T. G. Hallam G. Ladas, V. Lakshmikantham: On the asymptotic behavior of functional differential equations. SIAM J. Math. Anal., 3 (1972), 58-64. | MR

[4] J. Kurzweil: On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for $t \to - \infty$. Časopis Pěst. Mat., 96 (1971), 229-238. | MR | Zbl

[5] G. Ladas, V. Lakshmikantham: Global existence and asymptotic equilibrium in Banach spaces. J. Indian Math. Soc., 36 (1972), 33-40. | MR | Zbl

[6] G. Ladas, V. Lakshmikantham: Asymptotic equilibrium of ordinary differential systems. Applicable Anal., 5 (1975), 33-39. | MR | Zbl

[7] E.-B. Lim: Asymptotic behavior of solutions of the functional differential equation $x' = A x(\lambda t) + B x(t)$, $\lambda > 0$. J. Math. Anal. Appl., 55 (1978), 794-806. | MR

[8] A. R. Mitchell, R. W. Mitchell: Asymptotic equilibrium of ordinary differential systems in a Banach space. Math. Systems Theory, 9 (1976), 308-314. | MR | Zbl

[9] L. Pandolfi: Some Observations on the Asymptotic Behavior of the Solutions of the Equation $\dot{x} = A(t)x(\lambda t) + B(t)x(t)$, $\lambda > 0$. J. Math. Anal. Appl., 67 (1979), 483-489. | MR

[10] V. A. Staikos: Differential Equations with Deviating Arguments-Oscillation Theory. (unpublished manuscripts).

[11] V. A. Staikos: Asymptotic behavior and oscillation of the bounded solutions of differential equations with deviating arguments. (in Russian), Ukrain. Mat. Ž., 31 (1979), 705 - 716. | MR