Keywords: differential equations with deviating arguments; terminal value problem; existence and uniqueness of solutions; asymptotic behavior of solutions
@article{ARM_1985_21_1_a5,
author = {Staikos, V. A. and Tsamatos, P. Ch.},
title = {On the terminal value problem for differential equations with deviating arguments},
journal = {Archivum mathematicum},
pages = {43--49},
year = {1985},
volume = {21},
number = {1},
mrnumber = {818306},
zbl = {0586.34056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a5/}
}
Staikos, V. A.; Tsamatos, P. Ch. On the terminal value problem for differential equations with deviating arguments. Archivum mathematicum, Tome 21 (1985) no. 1, pp. 43-49. http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a5/
[1] C Avramescu: Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires. Ann. Mat. Pura Appl., 81 (1969), 147-167. | MR | Zbl
[2] T. G. Hallam: A comparison principle for terminal value problems in ordinary differential equations. Trans. Amer. Math. Soc., 169 (1972), 49-57. | MR | Zbl
[3] T. G. Hallam G. Ladas, V. Lakshmikantham: On the asymptotic behavior of functional differential equations. SIAM J. Math. Anal., 3 (1972), 58-64. | MR
[4] J. Kurzweil: On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for $t \to - \infty$. Časopis Pěst. Mat., 96 (1971), 229-238. | MR | Zbl
[5] G. Ladas, V. Lakshmikantham: Global existence and asymptotic equilibrium in Banach spaces. J. Indian Math. Soc., 36 (1972), 33-40. | MR | Zbl
[6] G. Ladas, V. Lakshmikantham: Asymptotic equilibrium of ordinary differential systems. Applicable Anal., 5 (1975), 33-39. | MR | Zbl
[7] E.-B. Lim: Asymptotic behavior of solutions of the functional differential equation $x' = A x(\lambda t) + B x(t)$, $\lambda > 0$. J. Math. Anal. Appl., 55 (1978), 794-806. | MR
[8] A. R. Mitchell, R. W. Mitchell: Asymptotic equilibrium of ordinary differential systems in a Banach space. Math. Systems Theory, 9 (1976), 308-314. | MR | Zbl
[9] L. Pandolfi: Some Observations on the Asymptotic Behavior of the Solutions of the Equation $\dot{x} = A(t)x(\lambda t) + B(t)x(t)$, $\lambda > 0$. J. Math. Anal. Appl., 67 (1979), 483-489. | MR
[10] V. A. Staikos: Differential Equations with Deviating Arguments-Oscillation Theory. (unpublished manuscripts).
[11] V. A. Staikos: Asymptotic behavior and oscillation of the bounded solutions of differential equations with deviating arguments. (in Russian), Ukrain. Mat. Ž., 31 (1979), 705 - 716. | MR