A characterization of inductive posets
Archivum mathematicum, Tome 21 (1985) no. 1, pp. 39-42 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06A06, 06A12
Keywords: partially ordered sets; fixed points; isotone mappings
@article{ARM_1985_21_1_a4,
     author = {Klime\v{s}, Ji\v{r}{\'\i}},
     title = {A characterization of inductive posets},
     journal = {Archivum mathematicum},
     pages = {39--42},
     year = {1985},
     volume = {21},
     number = {1},
     mrnumber = {818305},
     zbl = {0583.06004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a4/}
}
TY  - JOUR
AU  - Klimeš, Jiří
TI  - A characterization of inductive posets
JO  - Archivum mathematicum
PY  - 1985
SP  - 39
EP  - 42
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a4/
LA  - en
ID  - ARM_1985_21_1_a4
ER  - 
%0 Journal Article
%A Klimeš, Jiří
%T A characterization of inductive posets
%J Archivum mathematicum
%D 1985
%P 39-42
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a4/
%G en
%F ARM_1985_21_1_a4
Klimeš, Jiří. A characterization of inductive posets. Archivum mathematicum, Tome 21 (1985) no. 1, pp. 39-42. http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a4/

[1] S. Abian, A. B. Bгown: A theorem on partially ordered sets with applications to fixed point theorems. Canad. J. Math. 13 (1961), 78-83. | MR

[2] N. Bouгbaki: Theorie des Ensembles. Paris, 1956.

[3] P. Crawley, R. P. Dilworth: Algebraic Theory of Lattices. Prentice-Hall., Englewood Cliffs, NJ, 1973. | Zbl

[4] А. C. Davis: A characterization of complete lattices. Pacific J. Math. 5 (1955), 311-319. | MR | Zbl

[5] G. Markowsky: Chain complete posets and directed sets with applications. Аlg. Universalis 6 (1976), 53-68. | MR | Zbl

[6] А. Taгski: A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309. | MR

[7] E. Zermelo: Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Аnn. 65 (1908), 107-128.