Systems of equations depending on certain ideals
Archivum mathematicum, Tome 21 (1985) no. 1, pp. 23-38 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11D41, 11R18
Keywords: Kummer's system of equations; Stickelberger ideal; the first case of Fermat's last theorem; Mirimanoff polynomials; group ring of a cyclic group over the Galois field
@article{ARM_1985_21_1_a3,
     author = {Skula, Ladislav},
     title = {Systems of equations depending on certain ideals},
     journal = {Archivum mathematicum},
     pages = {23--38},
     year = {1985},
     volume = {21},
     number = {1},
     mrnumber = {818304},
     zbl = {0589.12005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a3/}
}
TY  - JOUR
AU  - Skula, Ladislav
TI  - Systems of equations depending on certain ideals
JO  - Archivum mathematicum
PY  - 1985
SP  - 23
EP  - 38
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a3/
LA  - en
ID  - ARM_1985_21_1_a3
ER  - 
%0 Journal Article
%A Skula, Ladislav
%T Systems of equations depending on certain ideals
%J Archivum mathematicum
%D 1985
%P 23-38
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a3/
%G en
%F ARM_1985_21_1_a3
Skula, Ladislav. Systems of equations depending on certain ideals. Archivum mathematicum, Tome 21 (1985) no. 1, pp. 23-38. http://geodesic.mathdoc.fr/item/ARM_1985_21_1_a3/

[1] P. Bachmann: Das Fermatproblem in seiner bisherigen Entwicklung. Walter de Gruyter, Berlin und Leipzig, 1919.

[2] E. E. Kummer: Einige Sätze über die aus den Wurzeln der Gleichnung $\alpha^\lambda = 1$ gebildeten complexen Zahlen für den Fall, dass die Classenzahl durch $\lambda$ teilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermatschen Lehrsatzes. Abhandl., Königl. Akad. Wiss., Beгlin, 1857, 41-74.

[З] P. Le Lidec: Sur une forme nouvelle des congruences de Kummer-Mirimanoff. C. R. Acad. Sc. Paris, 265 (1967), Série A, 89-90. | MR | Zbl

[4] P. Le Lidec: Nouvelle forme des congruences de Kummer-Mirimanoff pour le premier cas du théoréme de Fermat. Bull. Soc. Math. France, 97 (1969), 321-328. | MR | Zbl

[5] M. Mirimanoff: L'équation indéterminèe $z^1 + y^1 + z^1 = 0$ et le critérium de Kummer. J. Reine Angew. Math., 128 (1905), 45-68.

[6] P. Ribenboim: 13 Lectures on Fermat's Last Theorem. Springer-Verlag, New York-Heidelberg-Berlin, 1979. | MR | Zbl

[7] L. Skula: On certain ideals of the group ring Z[G]. Archivum Mathematicum (Brno), XV (1979), 53 T 66. | MR

[8] L. Skula: A remark on Mirimanoff polynomials. Comentarii Mathematici Universitatis Sancti Pauli (Tokyo), vol. 31, no. 1 (1982), 89-97. | MR | Zbl

[9] L. Skula: A note on index of irregularity. to appear. | MR