A double complex related with a system of partial differential equations. I
Archivum mathematicum, Tome 19 (1983) no. 2, pp. 83-97 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35R99, 55N35, 58A10, 58J10
@article{ARM_1983_19_2_a3,
     author = {Chrastina, Jan},
     title = {A double complex related with a system of partial differential equations. {I}},
     journal = {Archivum mathematicum},
     pages = {83--97},
     year = {1983},
     volume = {19},
     number = {2},
     mrnumber = {724301},
     zbl = {0539.58001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1983_19_2_a3/}
}
TY  - JOUR
AU  - Chrastina, Jan
TI  - A double complex related with a system of partial differential equations. I
JO  - Archivum mathematicum
PY  - 1983
SP  - 83
EP  - 97
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1983_19_2_a3/
LA  - en
ID  - ARM_1983_19_2_a3
ER  - 
%0 Journal Article
%A Chrastina, Jan
%T A double complex related with a system of partial differential equations. I
%J Archivum mathematicum
%D 1983
%P 83-97
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1983_19_2_a3/
%G en
%F ARM_1983_19_2_a3
Chrastina, Jan. A double complex related with a system of partial differential equations. I. Archivum mathematicum, Tome 19 (1983) no. 2, pp. 83-97. http://geodesic.mathdoc.fr/item/ARM_1983_19_2_a3/

[1] Tulczyjew W. M.: The Euler-Lagrange resolution. Internat. Coll. on Differential Geometric Methods in Mathematical Physics, Aix-en-Provence 1979, Lecture Notes in Mathematics 836, Springer, 22-48. | MR

[2] Haine L.: La suite spectrale d'Euler-Lagrange. Seminaire de Math. Pure, Institute Catholique de Louvain, 1-er semestre 1980. | Zbl

[3] Spencer D. C.: Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc, 75 (1969), 179-236. | MR | Zbl

[4] Serre J. P.: A letter in the paper by Guillemin, V. W. and Sternberg, S. Bull. Amer. Math. Soc. 70 (1964), 42-46.

[5] Cartan H., Eilenberg S.: Homological algebra. Princeton University, 1956. | MR | Zbl

[6] Dedecker P.: On the generalisation of symplectic geometry to multiple integrals in the calculus of variations. Lecture Notes in Mathematics 570, Springer, 395-456. | MR