Two-point boundary value problems for second order systems
Archivum mathematicum, Tome 19 (1983) no. 1, pp. 1-8 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 34B27
@article{ARM_1983_19_1_a0,
     author = {Agarwal, Ravi P. and Vosmansk\'y, Jarom{\'\i}r},
     title = {Two-point boundary value problems for second order systems},
     journal = {Archivum mathematicum},
     pages = {1--8},
     year = {1983},
     volume = {19},
     number = {1},
     mrnumber = {724304},
     zbl = {0536.34010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1983_19_1_a0/}
}
TY  - JOUR
AU  - Agarwal, Ravi P.
AU  - Vosmanský, Jaromír
TI  - Two-point boundary value problems for second order systems
JO  - Archivum mathematicum
PY  - 1983
SP  - 1
EP  - 8
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1983_19_1_a0/
LA  - en
ID  - ARM_1983_19_1_a0
ER  - 
%0 Journal Article
%A Agarwal, Ravi P.
%A Vosmanský, Jaromír
%T Two-point boundary value problems for second order systems
%J Archivum mathematicum
%D 1983
%P 1-8
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1983_19_1_a0/
%G en
%F ARM_1983_19_1_a0
Agarwal, Ravi P.; Vosmanský, Jaromír. Two-point boundary value problems for second order systems. Archivum mathematicum, Tome 19 (1983) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/ARM_1983_19_1_a0/

[1] Agarwal R. P.: On periodic solution of nonlinear second order differential systems. J. Comp. Appl. Math. 5 (1979), 117-123. | MR

[2] Agarwal R. P., Akrivis G.: Boundary value problems occuring in plate deflection theory. J. Comp. Appl. Math, (to appear). | MR

[3] Bailey P., Shampine L., Waltman P.: Nonlinear Two-Point Boundary Value Problems. Academic Press, New York, 1968. | MR | Zbl

[4] Bernfeld S. R., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York, 1974. | MR | Zbl

[5] Chandra J., Lakshmikantham V., Mitchell A. R.: Existence of solution of boundary value problems for nonlinear second order systems in a Banach space. Nonlinear Analysis: TMA, 2 (1978), 157-168. | MR

[6] Kantorovich L.: The method of succesive approximations for functional equations. Acta Math. 71 (1939), 63-97. | MR

[7] Lettenmeyer F.: Über die von einem Punkt ausgehenden Intergralkurven einer Differentialgleichung zweiter Ordnung. Deutsche Math. 7 (1942), 56-74. | MR

[8] Schroder J.: Das Integrationsverfahren bei verzahlgeminertem Abstandsbegriff. Math. Z. 66 (1956), 111-116. | MR

[9] Usmani R. A.: A uniqueness theorem for a boundary value problem. Proc. Amer. Math. Soc. 77 (1979), 329-335. | MR | Zbl

[10] Walter W.: Existence theorems for a two-point boundary value problem in Banach space. Math. Ann. 244 (1974), 55-64. | MR