@article{ARM_1982_18_3_a4,
author = {Kope\v{c}ek, Ivan},
title = {Distinguishing subsets in lattices},
journal = {Archivum mathematicum},
pages = {145--149},
year = {1982},
volume = {18},
number = {3},
mrnumber = {682102},
zbl = {0518.06002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1982_18_3_a4/}
}
Kopeček, Ivan. Distinguishing subsets in lattices. Archivum mathematicum, Tome 18 (1982) no. 3, pp. 145-149. http://geodesic.mathdoc.fr/item/ARM_1982_18_3_a4/
[1] Cohn P. M.: Universal Algebra. Harper & Row. N. Y. 1965. | MR | Zbl
[2] Jürgensen H.: Thierin G.: Semigroups with each element disjunctive. Institut für Theoretische Informatik Darmstadt, TI-17/79, 1979.
[3] Kopeček I.: Distinguishing subsets in general algebras. Čas. pro pěst. mat., 106(1981), 94-100. | MR
[4] Novotný M.: On some relations defined by languages. Prague Studies in Math. Linguistics 4, 1972, 157-170. | MR
[5] Opp M.: Charakterisierungen erkennbarer Termmengungen in absolut freien universelen Algebren. Bericht Nr. 20. Institut für Informatik, Hamburg 1976.
[6] Schein B. M.: Homomorphisms and subdirect decomposition of semigroups. Pacific J. Math. 17 (1966), 529-547. | MR
[7] Schützenberger M. P.: Une theorie algebrique du codage. C. R. Acad. Sc. Paris 242 (1956), 862-864. | MR
[8] Shyr H. J.: Disjunctive languages on a free monoid. Information and Control 34 (1977), 123-129. | MR | Zbl
[9] Szász G.: Introduction to Lattice Theory. Budapest, Akadémiai Kiadó, 1963. | MR
[10] Tully E. J., Jr.: Representation of semigroups by transformation of a set. Dissertation, Tulane Univ., I960.
[11] Zapletal J.: Distinguishing subsets of semigroups and groups. Arch. Math. Brno 4 (1968), 241-250. | MR | Zbl
[12] Zapletal J.: Distinguishing subsets in semilattices. Arch. Math. Brno 2 (1973), 73-82. | MR
[13] Zapletal J.: On the characterization of semilattices satisfying the descending chain condition and some remarks on distinguishing subsets. Arch. Math., Brno 2 (1973), 123-128. | MR