@article{ARM_1982_18_3_a2,
author = {Duda, Jarom{\'\i}r},
title = {A functional characterization of parallelogram spaces},
journal = {Archivum mathematicum},
pages = {129--132},
year = {1982},
volume = {18},
number = {3},
mrnumber = {682100},
zbl = {0515.08004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1982_18_3_a2/}
}
Duda, Jaromír. A functional characterization of parallelogram spaces. Archivum mathematicum, Tome 18 (1982) no. 3, pp. 129-132. http://geodesic.mathdoc.fr/item/ARM_1982_18_3_a2/
[1] Csákány B.: Varieties of affine modules. Acta Sci. Math. (Szeged), 37 (1975), 3-10. | MR | Zbl
[2] Csákány B.: Conditions involving universally quantified function variables. Acta Sci., Math. (Szeged), 38 (1976), 7-11. | MR | Zbl
[3] Grätzer G.: Universal Algebra. (2-nd edition), Springer-Verlag 1979. | MR
[4] Gumm H. P.: Algebras in permutable varieties: Geometrical properties of affine algebras. Algebгa Univ., 9 (1979), 8-34. | MR | Zbl
[5] Klukovits L.: On commutative universal algebras. Acta Sci. Math. (Szeged), 34 (1973), 171-174. | MR | Zbl
[6] Ostermann F., Schmidt J.: Begründung der Vektorrechnung aus Parallelogrammeigenschaften. Math.-Phys. Semesteгbeгichte, 10/1 (1963), 47-64. | Zbl
[7] Ostermann F., Schmidt J.: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie. J. reine u. angewandte Math. 224 (1966), 44-57. | MR | Zbl