@article{ARM_1982_18_2_a4,
author = {Sekanina, Milan and Sekaninov\'a, Anna},
title = {Arbitrarily traceable {Eulerian} graph has the {Hamiltonian} square},
journal = {Archivum mathematicum},
pages = {91--93},
year = {1982},
volume = {18},
number = {2},
mrnumber = {683350},
zbl = {0503.05042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a4/}
}
Sekanina, Milan; Sekaninová, Anna. Arbitrarily traceable Eulerian graph has the Hamiltonian square. Archivum mathematicum, Tome 18 (1982) no. 2, pp. 91-93. http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a4/
[1] Fleischner H.: The square of every nonseparable graph is Hamiltonian. Bull. Am. Math. Soc., 77 (1971), 1052-1054. | MR | Zbl
[2] Fleischner H., Hobbs A. M.: A necessary condition, for the square of a graph to be Hamiltonian. J. of Comb. Theory, 19, 1975, 97-118. | MR | Zbl
[3] Hobbs A. M.: Hamiltonian square of cacti. J. of Comb. Theory, Series B, 26 (1979), 50-65. | MR
[4] Karaganis J. J.: On the cube a graph. Can. Math. Bull., 11 (1968), 295-296. | MR
[5] Neuman F.: On a certain ordering of the vertices of a tree. Časopis pěst. mat., 89 (1964) 323-339. | MR | Zbl
[6] Ore O.: A problem regarding the tracing of graphs. Elem. Math., 6 (1951), 49-53. | MR | Zbl
[7] Ore O.: Theory of graphs. A. M. S., Providence, 1962. | MR | Zbl
[8] Sekanina M.: On an ordering of the set of vertices of a connected graph. Publ. Fac. Sc. Univ. Brno, No 412, 1960, 137-142. | MR | Zbl