Arbitrarily traceable Eulerian graph has the Hamiltonian square
Archivum mathematicum, Tome 18 (1982) no. 2, pp. 91-93 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C45
@article{ARM_1982_18_2_a4,
     author = {Sekanina, Milan and Sekaninov\'a, Anna},
     title = {Arbitrarily traceable {Eulerian} graph has the {Hamiltonian} square},
     journal = {Archivum mathematicum},
     pages = {91--93},
     year = {1982},
     volume = {18},
     number = {2},
     mrnumber = {683350},
     zbl = {0503.05042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a4/}
}
TY  - JOUR
AU  - Sekanina, Milan
AU  - Sekaninová, Anna
TI  - Arbitrarily traceable Eulerian graph has the Hamiltonian square
JO  - Archivum mathematicum
PY  - 1982
SP  - 91
EP  - 93
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a4/
LA  - en
ID  - ARM_1982_18_2_a4
ER  - 
%0 Journal Article
%A Sekanina, Milan
%A Sekaninová, Anna
%T Arbitrarily traceable Eulerian graph has the Hamiltonian square
%J Archivum mathematicum
%D 1982
%P 91-93
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a4/
%G en
%F ARM_1982_18_2_a4
Sekanina, Milan; Sekaninová, Anna. Arbitrarily traceable Eulerian graph has the Hamiltonian square. Archivum mathematicum, Tome 18 (1982) no. 2, pp. 91-93. http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a4/

[1] Fleischner H.: The square of every nonseparable graph is Hamiltonian. Bull. Am. Math. Soc., 77 (1971), 1052-1054. | MR | Zbl

[2] Fleischner H., Hobbs A. M.: A necessary condition, for the square of a graph to be Hamiltonian. J. of Comb. Theory, 19, 1975, 97-118. | MR | Zbl

[3] Hobbs A. M.: Hamiltonian square of cacti. J. of Comb. Theory, Series B, 26 (1979), 50-65. | MR

[4] Karaganis J. J.: On the cube a graph. Can. Math. Bull., 11 (1968), 295-296. | MR

[5] Neuman F.: On a certain ordering of the vertices of a tree. Časopis pěst. mat., 89 (1964) 323-339. | MR | Zbl

[6] Ore O.: A problem regarding the tracing of graphs. Elem. Math., 6 (1951), 49-53. | MR | Zbl

[7] Ore O.: Theory of graphs. A. M. S., Providence, 1962. | MR | Zbl

[8] Sekanina M.: On an ordering of the set of vertices of a connected graph. Publ. Fac. Sc. Univ. Brno, No 412, 1960, 137-142. | MR | Zbl