On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$
Archivum mathematicum, Tome 18 (1982) no. 2, pp. 65-76
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34D05, 34D20, 34E05, 34M99
@article{ARM_1982_18_2_a1,
     author = {Kalas, Josef},
     title = {On a {{\textquotedblleft}Liapunov} like{\textquotedblright} function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$},
     journal = {Archivum mathematicum},
     pages = {65--76},
     year = {1982},
     volume = {18},
     number = {2},
     mrnumber = {683347},
     zbl = {0498.34039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a1/}
}
TY  - JOUR
AU  - Kalas, Josef
TI  - On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$
JO  - Archivum mathematicum
PY  - 1982
SP  - 65
EP  - 76
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a1/
LA  - en
ID  - ARM_1982_18_2_a1
ER  - 
%0 Journal Article
%A Kalas, Josef
%T On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$
%J Archivum mathematicum
%D 1982
%P 65-76
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a1/
%G en
%F ARM_1982_18_2_a1
Kalas, Josef. On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$. Archivum mathematicum, Tome 18 (1982) no. 2, pp. 65-76. http://geodesic.mathdoc.fr/item/ARM_1982_18_2_a1/

[1] Hartman P.: Ordinary Differential Equations. Wiley, New York/London/Sydney, 1964. | MR | Zbl

[2] Kalas J.: Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f. Proceedings of the Colloquium on Qualitative Theory of Differential Equations, August 1979, Szeged-Hungary, Seria Colloquia Mathematica Societatis János Bolyai & North-Holland Publishing Company, pp. 431-462. | MR

[3] Kalas J.: On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f. Arch. Math. (Brno) 17 (1981), 11-22. | MR | Zbl

[4] Kalas J.: On certain asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f. Czech. Math. Journal, to appear. | MR

[5] Kalas J.: Asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f. Arch. Math. (Brno) 17 (1981), 113-124. | MR

[6] Kalas J.: Asymptotic behaviour of equations $\dot{z] = q(t, z) - p(t) z^2$ and $\ddot{x} = x \varphi(t, \dot{x} x^{-1})$. Arch. Math. (Brno) 17 (1981), 191-206. | MR

[7] Ráb M.: The Riccati differential equation with complex-valued coefficients. Czech. Math. Journal 20 (1970), 491-503. | MR

[8] Ráb M.: Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients. J. Diff. Equations 25 (1977), 108-114. | MR

[9] Sverdlove R.: Vector fields defined by complex functions. J. Differential Equations 34 (1979), 427-439. | MR | Zbl