@article{ARM_1982_18_1_a5,
author = {Philos, Christos G.},
title = {Oscillations of superlinear differential equations with deviating arguments},
journal = {Archivum mathematicum},
pages = {35--48},
year = {1982},
volume = {18},
number = {1},
mrnumber = {683344},
zbl = {0502.34057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1982_18_1_a5/}
}
Philos, Christos G. Oscillations of superlinear differential equations with deviating arguments. Archivum mathematicum, Tome 18 (1982) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/ARM_1982_18_1_a5/
[1] I. T. Kiguradze: On the oscillation of solutions of the equation $\frac{d^m u}{dt^m} + a(t) |u|^n \sgn{u} = 0. (Russian), Mat. Sb. 65 (1964), 172-187. | MR | Zbl
[2] I. T. Kiguradze: The problem of oscillation of solutions of nonlinear differential equations. (Russian), Differenciaľnye Uravnenija 1 (1965), 995-1006. | MR | Zbl
[3] Y. Kitamura, T. Kusano: An oscillation theorem for a superlinear functional differential equation with general deviating arguments. Bull. Austral. Math. Soc. 18 (1978), 395-402. | MR | Zbl
[4] P. Marushiak: Oscillation properties of solutions of n-th order differential equations with time lag. Differenciaľnye Uravnenija 14 (1978), 1186-1191. | MR | Zbl
[5] Ju. A. Mitropoľskii, V. N. Ševelo: On the development of the theory of oscillation of solutions of differential equations with retarded argument. Ukrain. Mat. Ž. 29 (1977), 313-323. | MR
[6] Ch. G. Philos: Oscillatory and asymptotic behavior of the bounded solutions of differential equations with deviating arguments. Hiroshima Math. J. 8 (1978), 31-48. | MR | Zbl
[7] Ch. G. Philos: Oscillatory and asymptotic behavior of all solutions of differential equations with deviating arguments. Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 195-210. | MR
[8] Ch. G. Philos: Oscillatory and asymptotic behavior of strongly superlinear differential equations with deviating arguments. Ann. Mat. Pura Appl., 126 (1980), 342-361. | MR | Zbl
[9] V. A. Staikos: Basic results on oscillation for differential equations with deviating arguments. Hiroshima Math. J., 10 (1980), Hiroshima Math. J. 10 (1980), 495-516. | MR | Zbl