@article{ARM_1981_17_3_a6,
author = {Pavl{\'\i}kov\'a, Elena},
title = {Higher monotonicity properties of certain {Sturm-Liouville} functions},
journal = {Archivum mathematicum},
pages = {159--167},
year = {1981},
volume = {17},
number = {3},
mrnumber = {672321},
zbl = {0523.34007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1981_17_3_a6/}
}
Pavlíková, Elena. Higher monotonicity properties of certain Sturm-Liouville functions. Archivum mathematicum, Tome 17 (1981) no. 3, pp. 159-167. http://geodesic.mathdoc.fr/item/ARM_1981_17_3_a6/
[1] Háčik M.: Contribution to the monotonicity of the sequence of zero points integrals of the differential equation $y\sp{\prime\prime}+g(t)y=0$ with regard to the basis $[\alpha ,\,\beta ]$. Arch. Math. 8, Brno, (1972), 79-83. | MR
[2] Laitoch M.: L'équation associée dans la théorie des transformations des équations différentielles du second ordre. Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. | MR | Zbl
[3] Lorch L., Muldon M., Szego P.: Higher monotonicity properties of certain Sturm Liouville functions. IV. Canad. Journal of Math., XXIV, (1972), 349-368. | MR
[4] Vosmanský J.: The monotonicity of extremants of integrals of the differential equation $y\sp{\prime\prime}+g(t)y=0$. Arch. Math. 2, Brno, (1966), 105-111. | MR
[5] Vosmanský J.: Certain higher monotonicity properties of $i$-th derivatives of solutions of $y"+a(t)y'+b(t)y=0$. Arch. Math. 2, Brno, (1974), 87-102. | MR