Higher monotonicity properties of certain Sturm-Liouville functions
Archivum mathematicum, Tome 17 (1981) no. 3, pp. 159-167
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 33C10, 34L99
@article{ARM_1981_17_3_a6,
     author = {Pavl{\'\i}kov\'a, Elena},
     title = {Higher monotonicity properties of certain {Sturm-Liouville} functions},
     journal = {Archivum mathematicum},
     pages = {159--167},
     year = {1981},
     volume = {17},
     number = {3},
     mrnumber = {672321},
     zbl = {0523.34007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1981_17_3_a6/}
}
TY  - JOUR
AU  - Pavlíková, Elena
TI  - Higher monotonicity properties of certain Sturm-Liouville functions
JO  - Archivum mathematicum
PY  - 1981
SP  - 159
EP  - 167
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1981_17_3_a6/
LA  - en
ID  - ARM_1981_17_3_a6
ER  - 
%0 Journal Article
%A Pavlíková, Elena
%T Higher monotonicity properties of certain Sturm-Liouville functions
%J Archivum mathematicum
%D 1981
%P 159-167
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1981_17_3_a6/
%G en
%F ARM_1981_17_3_a6
Pavlíková, Elena. Higher monotonicity properties of certain Sturm-Liouville functions. Archivum mathematicum, Tome 17 (1981) no. 3, pp. 159-167. http://geodesic.mathdoc.fr/item/ARM_1981_17_3_a6/

[1] Háčik M.: Contribution to the monotonicity of the sequence of zero points integrals of the differential equation $y\sp{\prime\prime}+g(t)y=0$ with regard to the basis $[\alpha ,\,\beta ]$. Arch. Math. 8, Brno, (1972), 79-83. | MR

[2] Laitoch M.: L'équation associée dans la théorie des transformations des équations différentielles du second ordre. Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. | MR | Zbl

[3] Lorch L., Muldon M., Szego P.: Higher monotonicity properties of certain Sturm Liouville functions. IV. Canad. Journal of Math., XXIV, (1972), 349-368. | MR

[4] Vosmanský J.: The monotonicity of extremants of integrals of the differential equation $y\sp{\prime\prime}+g(t)y=0$. Arch. Math. 2, Brno, (1966), 105-111. | MR

[5] Vosmanský J.: Certain higher monotonicity properties of $i$-th derivatives of solutions of $y"+a(t)y'+b(t)y=0$. Arch. Math. 2, Brno, (1974), 87-102. | MR