@article{ARM_1979_15_2_a4,
author = {Res, Ivo},
title = {Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$},
journal = {Archivum mathematicum},
pages = {119--128},
year = {1979},
volume = {15},
number = {2},
mrnumber = {563144},
zbl = {0432.34036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a4/}
}
TY - JOUR
AU - Res, Ivo
TI - Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
JO - Archivum mathematicum
PY - 1979
SP - 119
EP - 128
VL - 15
IS - 2
UR - http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a4/
LA - en
ID - ARM_1979_15_2_a4
ER -
Res, Ivo. Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$. Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a4/
[1] M. Ráb: Les dèvelopements asymptotiques des solutions de l'equation. Arch. Math. Brno, T2 (1966). | MR
[2] M. Ráb: Über lineare Perturbationen eines Systems von linearen Differentialgleichungen. Czech. Mat. Journ. Praha, T 8 (83) (1953). | MR
[3] M. Ráb: Asymptotic expansion of solutions of the equation $(p(x) y')' -q(x)y = 0$ with complex-valued coefficients. Arch. Math. Brno, | MR
[4] I. Res: Asymptotische Eìgenschaften einer perturbierten interierten Differentialgleichung. Arch. Math. Brno, T X (1974), 149-158. | MR
[5] I. Res: Asymptotické vlastnosti řešení diferenciálni rovnice ${A_{n-1}^{-1} (x) \ldots [A_1^{-1} (x) y']' \ldots }'=A_n (x) y$. Acta Universitatis Agriculturae Brno, Ser. C. 43, (1974, 4) 365--372.
[6] U. Richard: Serie asintotische per una classe di equationi differenziali de 2° ordine. Rendiconti del Sem. Math. Torino, Vol. 23 (1963-1964). | MR