Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34E05
@article{ARM_1979_15_2_a4,
     author = {Res, Ivo},
     title = {Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$},
     journal = {Archivum mathematicum},
     pages = {119--128},
     year = {1979},
     volume = {15},
     number = {2},
     mrnumber = {563144},
     zbl = {0432.34036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a4/}
}
TY  - JOUR
AU  - Res, Ivo
TI  - Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
JO  - Archivum mathematicum
PY  - 1979
SP  - 119
EP  - 128
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a4/
LA  - en
ID  - ARM_1979_15_2_a4
ER  - 
%0 Journal Article
%A Res, Ivo
%T Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$
%J Archivum mathematicum
%D 1979
%P 119-128
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a4/
%G en
%F ARM_1979_15_2_a4
Res, Ivo. Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$. Archivum mathematicum, Tome 15 (1979) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a4/

[1] M. Ráb: Les dèvelopements asymptotiques des solutions de l'equation. Arch. Math. Brno, T2 (1966). | MR

[2] M. Ráb: Über lineare Perturbationen eines Systems von linearen Differentialgleichungen. Czech. Mat. Journ. Praha, T 8 (83) (1953). | MR

[3] M. Ráb: Asymptotic expansion of solutions of the equation $(p(x) y')' -q(x)y = 0$ with complex-valued coefficients. Arch. Math. Brno, | MR

[4] I. Res: Asymptotische Eìgenschaften einer perturbierten interierten Differentialgleichung. Arch. Math. Brno, T X (1974), 149-158. | MR

[5] I. Res: Asymptotické vlastnosti řešení diferenciálni rovnice ${A_{n-1}^{-1} (x) \ldots [A_1^{-1} (x) y']' \ldots }'=A_n (x) y$. Acta Universitatis Agriculturae Brno, Ser. C. 43, (1974, 4) 365--372.

[6] U. Richard: Serie asintotische per una classe di equationi differenziali de 2° ordine. Rendiconti del Sem. Math. Torino, Vol. 23 (1963-1964). | MR